如何正确的自学Python?

前言

学会Python能做的事情也很多,常见的就有网络爬虫,数据分析,前端开发,机器学习,都能很好地提高工作效率,往任何一个领域发展,工作前景是非常不错的。接下来我从基本的软件安装开始,仔细的给大家分析新手入门应该怎样学习Python吧,如果有讲得不到位的地方也欢迎大家指正,我会及时进行修改。

在这里插入图片描述

一、软件的安装和选择

1、配置环境

关系到实操,所以在选择资料的同时,你还需要安装好Python需要的软件,软件版本没有太多的要求,你可以选择现在的最新版,也可以打听一下其他朋友们觉得比较好用的是哪个版本在我看来,新版本会有一些新的内容出现,但在使用的时候可能会不太稳定,而且想要找到新版相关的资料也会比较困难,常用的正式版也是一个比较好的选择,使用的人群基数大,所以在操作方面不容易出现问题。

在这里插入图片描述
如果是零开始学习Python的话,我建议从python3开始,因为从未来的趋势来看python3发展会较好,支持现有的主流操作平台,不管是 windows、mac还是linux,都能很好的运行 Python。这二者区别不太大,只是程序不兼容,但是语法变动并不多,选择任何一个入手,都没有大影响,如果你python3语法熟练了,再用python2同样上手很快。这里还是要推荐下小编的Python学习Q裙*:‘七四八,九八九,七六四’不管你是小白还是大牛,小编我都欢迎,不定期分享干货,包括小编自己整理的一份2021最新的Python资料和0基础入门教程,欢迎初学和进阶中的小伙伴。在不忙的时间我会给大家解惑。

2、编辑器选择python有很多种编译器,初学可以从Python 自带的编辑器idle入手,等到熟练以后可以转到其他编译器上,例如pycharm、SublimeText、jupyter notebook等如果你准备用python来进行数据分析的话,那下面这个课程就刚刚好。这是知乎的数据分析课程,python是数据分析工具的一部分,所以会着重来将这方面的知识,这个可比干巴巴来讲python可有意思多了。而且据我观察,大部分人学习python就是用来数据分析的,所以也是学以致用。不至于学习系统的教程,导致过度学习,浪费时间。

二、Python基础学习方法

1、选择简单的入门书籍

难度一定要是入门级别,刚开始不能学得太复杂,学东西要循序渐进,不能一口吃个胖子,难度过高反而会打消你的学习积极性,对初学者来说,一定要找一个通熟易懂的书。现在能找到的Python入门书籍很多,我个人推荐《 Python学习手册》作者写作思路非常清晰,每一个知识点讲解的很到位,简明易懂,对初学者来说,比较友好,电子版我已经打包好,还有一些视频资料,都是基础入门阶段用得上的。

三、跟着视频学习

当然如果你身边有Python学得好的大佬那就更好了,那比视频更直接更高效,Python只看书那是不现实的 ,因为你最终的目的还是通过计算机实现一系列操作,在操作过程中可能会出现大大小小的问题,这也是书本不能够解决的。视频的好处就是你可以直观的看明白每一步的操作步骤,知道每一串字符,每一个代码起到的作用,书本在这里只是起到一个辅助的作用。

四、多上手操作

这听起来是一句废话,但确实是一句实话,学编程一定要亲自去编写,没有什么捷径可以走.哪怕你把书里面的例子一字不落敲一遍,也好过你只是去看书,而不动手。还有就是坚持,三天打鱼两天晒网的学习Python是不现实的,就算是每天抽小半个小时敲代码那都是有作用的,只要你能不断的坚持,快的话几个星期就能入门了。如果有什么学习上的问题大家都可以在我的学习群里提出来,我看到了也会帮大家解答,同时群里也有一起打卡学习的同伴,互相监督,比一个人埋头学习更有效率。

读者福利:知道你对Python感兴趣,还准备了这套python学习资料

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python永久使用安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等学习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

👉Python必备开发工具👈

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈



在这里插入图片描述

资料领取

上述这份完整版的网络安全学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码 即可自动领取↓↓↓
或者

点此链接】领取

<think>好的,用户想自学Python编程,询问入门教程。我需要根据提供的引用内容来组织回答,确保符合系统级指令的要求。 首先,用户需要的是入门教程,引用[2]提到了400集的免费教程,适合从零开始学习,应该优先推荐。同时引用[1]中的《Python中文指南》是面向初学者的零基础教程,建议通读,这也是一个重点。 接下来,用户可能需要了解如何配置开发环境。引用[4]提到开发软件和环境配置的教程,这里可以推荐Anaconda和PyCharm,引用[1]里的《PyCharm 中文指南》能帮助用户更好地使用这个IDE。 然后,关于科学计算和数据分析,引用[3]介绍了使用Anaconda和Jupyter Notebook的内容,适合进阶学习,可以作为后续推荐。 还要确保回答结构清晰,分步骤给出建议,比如先基础教程,再开发环境,然后实践项目,最后进阶内容。同时,每个部分末尾自然地添加引用标识。 需要检查是否所有数学公式都用了正确的格式,虽然当前问题可能不涉及数学,但如果有变量或代码,要正确使用代码块。例如Python代码示例需要用```python包裹。 最后生成相关问题,要围绕Python自学路径、开发工具选择、免费资源、科学计算等方面提问,确保问题相关且有参考价值。 现在整理回答结构: 1. 推荐基础教程:引用[2]和[1]中的《Python中文指南》 2. 开发环境配置:引用[4]和[1]中的PyCharm指南 3. 科学计算和数据分析:引用[3] 4. 实践项目:引用[1]的《Python Cookbook》和《Python 黑魔法指南》 5. 注意事项:学习路径、练习、社区支持 然后生成相关问题,覆盖教程选择、开发工具、免费资源、科学计算、实践项目等。 确保引用正确,每个引用后的标识符对应正确的来源。</think>### Python 编程自学入门指南 #### 1. **零基础入门教程推荐** - **《Python中文指南》**:专为初学者设计,内容涵盖基础语法、常用库和实战案例,建议通读并配合练习[^1]。 - **免费视频教程**:B站等平台提供400集免费教程,适合系统性学习(例如变量定义、循环结构等基础概念)[^2]。 #### 2. **开发环境配置** - **Anaconda**:集成Python解释器、Jupyter Notebook和常用科学计算库,适合数据分析场景[^3]。 - **PyCharm**:专业Python IDE,通过《PyCharm 中文指南》可掌握调试、版本控制等高级功能[^4]。 ```python # 示例:Python基础语法 print("Hello, World!") ``` #### 3. **科学计算与数据分析** - **《自学Python——编程基础、科学计算及数据分析》**:使用Anaconda环境,结合IPython和Jupyter Notebook讲解数据处理方法[^3]。 #### 4. **实战项目与进阶** - **《Python Cookbook》**:学习高级特性(如装饰器、生成器)和开发技巧。 - **《Python 黑魔法指南》**:积累100+实用技巧(例如列表推导式优化、上下文管理器)[^1]。 #### 5. **注意事项** - **学习路径**:先掌握基础语法 → 熟悉开发工具 → 完成小项目 → 深入特定领域(如Web开发、AI)。 - **练习与社区**:通过LeetCode、Kaggle练习代码,参与GitHub开源项目提升实战能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值