【Infineon AURIX】AURIX缓存(CACHE)变量访问指南 调试器只能读取真实内存。无法获取缓存中的最新值。禁用ENDINIT保护。配置CPU_DCON0。调试显示错误的变量值。:启用缓存监视器执行。
【OTA】论文笔记--《智能网联汽车整车OTA功能设计研究》智能网联汽车OTA系统设计分析报告 降低车辆召回成本实现车辆软件和数据的统一管理提高售后服务效率和质量提供车载娱乐系统增值服务通过快速更新迭代优化驾驶辅助功能。
【OTA】论文学习笔记--《基于RTOS的车载ECU双分区OTA升级技术分析报告》 汽车智能化、网联化发展趋势下,OTA升级已成为智能网联汽车的必备功能- 传统RTOS控制器在OTA升级失败后无法进行软件回滚,导致控制器功能失效- 现有技术主要针对Linux、QNX等智能操作系统,缺乏针对RTOS的解决方案提出一种适用于RTOS控制器的双分区升级技术,解决以下问题:- OTA升级失败后的软件回滚- 确保升级过程的可靠性- 实现不同硬件平台的兼容性。
【学习笔记】检测基于RTOS的设计中的堆栈溢出-第2部分 本文讨论了在嵌入式系统中**检测和防止任务堆栈溢出**的问题。堆栈溢出可能导致程序异常行为,甚至引发系统崩溃,因此有效的检测和防护机制至关重要。作者介绍了多种技术,包括硬件和软件方法,详细阐述了每种技术的原理、实现方式以及优缺点。
【学习笔记】基于RTOS的设计中的堆栈溢出(Stack Overflow)-第1部分 基于RTOS的应用程序中的每个任务都需要自己的堆栈,堆栈的大小取决于任务的要求(例如,函数调用嵌套、传递给函数的参数、局部变量等)。为了避免堆栈溢出,开发人员需要过度分配堆栈空间,但不要太多,以避免浪费RAM。
【AUTOSAR OS】OS COUNTER 操作系统计时器 AUTOSAR OS计数器作为实时系统性能的关键组件,在现代汽车电子系统中扮演着不可或缺的角色。通过本文的深入探讨,我们可以得出以下结论:核心功能:计数器为AUTOSAR OS提供了精确的时间管理和任务调度能力,是实现实时性能的基础。灵活性:AUTOSAR OS支持多种类型的计数器,包括硬件和软件计数器,能够适应不同的应用场景和性能需求。系统性能影响:合理配置和优化计数器可以显著提升系统的实时性能、资源利用效率和可靠性。
【论文解读】《Biasing Effects in Schedulability Measures》 该文件讨论了可调度性度量中的偏差效应,特别是在速率单调(RM)调度算法的背景下。主要观点和关键论点如下:通常通过生成大量合成任务集并计算通过测试的任务集占可行任务集的比例来评估可调度性测试的性能。然而,得到的比率取决于用于评估的指标和生成随机任务参数的方法。本文讨论并比较了三种不同的指标来评估可调度性测试的性能:分解利用率、利用率上界和一种称为最优度(OD)的新指标。本文研究了随机生成过程如何偏向特定调度算法(如RM)的仿真结果。
【AUTOSR OS】OsTaskTimingProtection--OsTaskAllInterruptLockBudget 参数详解 OsTaskAllInterruptLockBudget通常指的是一个任务在执行期间可以保持中断锁定的最大时间。这个预算的设置是为了防止任务在执行时被过多的中断打断,从而导致系统的实时性下降。通过合理配置这个预算,可以确保关键任务在执行时不会被其他低优先级的任务或中断打断。作用:1. 提高实时性:通过限制中断的干扰,OsTaskAllInterruptLockBudget可以确保高优先级任务在关键时刻能够获得足够的CPU时间。
【llama3.1】ollama的使用--本地部署使用llama3.1模型 安装完成ollama后,在命令行窗口输入上图表示 Ollama 正在下载llama3任务所需的资源文件,并显示了当前的下载进度、速度和预计剩余时间。这是 Ollama 在准备运行llama3任务之前所需的步骤。
【llama3.1】Ollama 下载安装指南 以上就是在 Windows 系统上下载和安装 Ollama 的详细步骤。希望这篇指南能帮助你顺利安装并开始使用 Ollama。如果你在安装过程中遇到任何问题,欢迎在评论区留言,我们会尽快帮助你解决。
【问题处理】DOIP 0x19服务超时问题的分析与解决 通过修改PDU长度配置,我们成功解决了19 0A服务请求反馈超时的问题。但是实际上排查问题花了大半天时间,整个过程包括问题分析、配置修改、代码生成、验证测试等步骤。获得的经验与教训,包括:在涉及到诊断的配置时,要仔细评估需求。像PDU长度这样的配置,并不是客户直接告诉你的,而需要工程师具有丰富的开发经验,才能知道该配置多少。这需要通过对诊断服务需求的理解和对系统能力的评估来决定。希望本文的经验分享能对其他工程师在处理类似问题时有所帮助。
【模型参数微调】最先进的参数高效微调 (PEFT) 方法 由于大型预训练模型的规模,微调大型预训练模型的成本通常高得令人望而却步。参数高效微调 (PEFT) 方法只需微调少量(额外)模型参数而不是所有模型参数,即可使大型预训练模型有效地适应各种下游应用。这大大降低了计算和存储成本。最近最先进的PEFT技术实现了与完全微调的模型相当的性能。PEFT 与 Transformers 集成,可轻松进行模型训练和推理,与 Diffusers 集成,方便地管理不同的适配器,与 Accelerate 集成,用于大型模型的分布式训练和推理。查看 PEFT 适配器 API 参考部分
【DeepL】菜鸟教程:如何申请DeepL免费API并使用Python的DeepL DeepL是一个基于人工智能的翻译服务,它以其出色的翻译质量和对语境的深入理解而著称。与其他翻译服务相比,DeepL能够提供更加自然、准确的翻译结果,这得益于其先进的深度学习技术和庞大的训练数据集。
【TRICORE TC3XX】CAN发送事件FIFO(Tx Event Fifo) Tx处理程序处理专用Tx缓冲区、TxFIFO和Tx队列的传输请求控制传输消息到CAN核心、放置和获取索引以及Tx事件FIFO的传输。最多可以为消息传输设置32个Tx缓冲区。可以为每个Tx缓冲区元素单独配置传输CAN模式(经典CAN或CANFD)。
【CAN基础】详解CAN总线报文中的ACK位及总线应答机制 CAN总线协议是一种多主控制器网络协议,允许多个网络节点通过共享的通信总线进行数据交换。它具有优秀的错误检测和冲突解决机制,适用于高速率和低速率的数据通信。CAN协议定义了物理层和数据链路层的标准,其中数据链路层负责帧的组装、发送、接收和错误处理等功能。通过上述分析,我们可以看到ACK应答机制在CAN总线协议中扮演着至关重要的角色。它不仅确保了数据传输的可靠性,还提高了网络的错误检测能力。无论是在工业自动化还是车辆网络中,这种高效且健壮的通信机制都是确保系统稳定运行不可或缺的一部分。
【人工智能】模型的部署简介 首先,选择适合你需求的部署方式,比如将模型部署到服务器、移动设备、边缘设备或云端等。在训练完成后,需要将训练好的模型导出为适合部署的格式,比如TensorFlow的SavedModel格式或PyTorch的torchscript格式。将导出的模型集成到你的应用程序中,确保应用程序能够加载和使用这个模型。针对部署环境进行模型优化,包括模型大小、推理速度等方面的优化,以确保模型在部署环境中能够高效运行。根据选择的部署方式,将优化后的模型部署到目标设备或平台上,并确保部署过程顺利进行。
【人工智能】DeepLearning学习路线及简要说明 在卷积神经网络(CNN)的发展历程中,AlexNet、VGGNet、GoogLeNet(Inception)、和ResNet都是具有里程碑意义的模型,它们分别代表了深度学习和计算机视觉领域的重大进展。它通过并行不同尺寸的卷积操作和池化操作,然后将它们的输出合并,这样做既可以捕捉到不同尺度的信息,又能保持计算资源的高效利用。它通常用于特征学习、降维、去噪等任务。自动编码器的目标是能够通过学习到的表示(编码)来重构输入数据,而这一过程通常涉及到两个主要部分:编码器(Encoder)和解码器(Decoder)。