- 博客(87)
- 收藏
- 关注
原创 材料数据库记录
特点: MOF是一类由无机节点和有机连接器构成的特殊结构材料,此数据集用于分析模型对MOF结构中电子相关性质的预测。数据来源: Catalysis-Hub数据库,包括37,334个结构,涵盖了大约2,000种独特的金属合金表面。特点: 主要集中在纳米尺度,包含不同大小的纳米簇,可用于测试模型对于不同结构-能量映射关系的特征提取能力。数据来源: QMOF数据库,包括18,321个独特结构,既包括实验合成的,也包括假设结构。特点: 提供了包括结构信息、能量特性等在内的多方面数据,用于材料研究和计算材料科学。
2024-01-19 20:20:39 1017
原创 ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 33908
【代码】ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 33908。
2024-01-08 13:55:43 2393
原创 C++ 复合数据类型:指针
定义一个指针后,如果不进行初始化,指针的内容就是不确定的。如果这时把它的内容当成一个地址去访问,那访问的是不存在的对象;这样的指针就是“无效指针”,也被叫做“野指针”。通过指针可以访问到指向的那个数据对象,所以这是一种间接访问对象的方法。计算机中的数据都存在内存中,访问内存的最小单元是“字节”,所有数据,就保存在内存中具有连续编号的一串字节中。如果先定义了一个指针,但不确定它要指向哪一个对象,可以先初始化为“空指针”。也叫“二级指针”,用连续两个“*” 表示,如果是三级指针则用三个表示。
2023-12-22 19:40:01 1204
原创 C++复合数据类型:结构体|枚举
实际应用中,经常会遇到某个数据对象只能取有限个常量值的情况,比如一周只有7天,扑克牌四种花色等。C++提供了一种批量创建符号常量的方式,可以替代const。这就是“枚举”enum。C/C++中提供了一种数据结构–结构体。是由用户自定义的复合数据结构,包含了很多不同类型的数据对象。实际应用中,往往需要将不同的信息打包到一起存储在一个单元中。
2023-12-21 16:26:04 1165
原创 C++复合数据类型:字符数组|读取键盘输入|简单读写文件
特点:忽略开始的空白字符,遇到下一个空白字符就会停止(空格,回车,制表符等),如果输入“hello world”,读取到的就只有hello。注意"world"并没有丢,只是保存在输入流的“输入队列中”,可以使用更多string 对象获取。getline函数有两个参数,一个是输入流对象cin, 一个是保存字符串的string对象,他会一直读取输入流中的内容,知道遇到换行符为止,然后把所有的内容保存到string对象中。在C中为了区分“字符数组”和“字符串”,C语言规定字符串必须用空字符结束,作为标记。
2023-12-20 17:16:21 1122
原创 C++复合数据类型:vector|string
模板类,和数组更加类似,长度固定,但更加方便安全,一般在实际应用中固定长度数组使用array,不固定长度数组使用vector。vector“容纳”着一堆数据对象,其实就是一组类型相同的数据对象的集合。数组长度在初始化时已经定义,访问范围也有限,数组长度还得通过计算。所以C++中定义了很多扩展的“抽象数据类型”,放于“标准库”中。对于数组功能进行扩展的一个标准库类型就是 “容器”同样可以使用 s.size()获取字符串长度。除了vector,c++ 11还新增了。
2023-12-20 11:20:41 541
原创 材料论文阅读/中文记录:Scaling deep learning for materials discovery
【新兴技术的发展与深度学习运用到更多领域】新型功能材料实现了从清洁能源到信息处理等技术应用的根本性突破。从微芯片到电池和光伏发电,无机晶体的发现一直受到昂贵的试错方法的瓶颈。与此同时,随着数据和计算的增加,语言、视觉和生物学的深度学习模型展示了新兴的预测能力。在这里,我们展示了大规模训练的图网络可以达到前所未有的泛化水平,【材料发现】从而将材料发现的效率提高一个数量级。
2023-12-18 19:44:26 2271
原创 论文阅读/中文记录,材料机器学习:Data-driven based phase constitution prediction in high entropy alloys
【背景】高熵合金(HEA)因其优异的材料性能和近乎无限的设计空间而吸引了越来越多的研究。开发有效的相组成预测方法对于新型 HEA 设计非常重要。【机器学习作用】机器学习(ML)作为一种有效的数据驱动方法,为 HEA 的相位预测提供了一种可能的方法,【本文目的】但是,缺乏对各种 ML 模型的有效性和差异的澄清。【主要内容】本文收集了800多个HEAs物相数据,总结了16个特征。使用各种机器学习模型来训练和预测相组成。结果表明,【结果1】
2023-12-09 15:37:55 1207 1
原创 vmware17.0|ubuntu22.04.0 解决灰色Vmware Tool 无法重新安装和 无法和win11相互拖拽文件问题
进入主目录,在左侧一栏会发现 vmware tools的文件夹,进去将压缩包复制到桌面,然后解压,会生成-distrib。就是默认,敲回车就行,但是要注意最后一步,最后一步有的默认[no],有的是默认[yes],最后一步输入no,敲回车。2.开启虚拟机,在开启虚拟机的过程中再次查看发现灰色图标可点击,点击重新安装VMware Tools。无法和windows互相复制粘贴文件。5.桌面进入终端,输入命令。3.点击后在下方会出现。6.一路默认,'[]
2023-10-26 13:36:22 2731 2
原创 2023 10月最新Vmd 下载安装教程,Windows&Linux
直接双击安装,连点两次直接装在了C盘(此处我没看到更改路径的步骤,所以我选择在LINUX中重新安装)1.直接下载好安装包(与windows版本不同,此处是压缩包),然后复制到LINUX中。注:点击后会出现输入用户名和密码,由于我已注册,界面不见了,所以直接描述一下。又可能make时显示没有make包,按照命令安装即可。2.在压缩包目录下,右键打开终端,输入。点击左下角download VMD。6.查看是否安装成功|运行。以下命令分开输入敲回车。
2023-10-24 17:45:33 11914 1
原创 B站视频“多模态大模型,科大讯飞前NLP专家串讲”记录
融合文本和图像的特征 --》 最后做二分类任务,此处的二分类需要输入的负样本较难(即与正样本难以区分),所以此处的负样本是在第一个中对比学习中分类分错的。对于文本生成模型,也将正确的样本传入进行再训练,然后对未知文本的图像进行生成文本,然后扔到匹配模型里判断是否匹配,如果不匹配则扔掉,最后的数据集里包括的则是原来的正确数据集和预测后的匹配图像文本对。对于图文匹配的模型,将正对的文本对传入再进行训练,使模型更正确,然后将弱监督对传入,判断是不是匹配,如果不匹配,则抛弃。表示人工标注好的,正确匹配的,
2023-10-13 22:20:49 730
原创 Diffusion Model论文/DALL E 2
Diffusion Model – 扩散模型21火爆了能做什么?去噪、基于文字生成图像DALL·E 2:输入文字描述,能够生产图像GAN – 生成式对抗网络。
2023-10-13 15:09:15 216
原创 论文学习记录--零样本学习(zero-shot learning)
这项工作介绍了一种模型,即使对于没有该对象类别的训练数据,也能够识别图像中的对象。关于未见过的视觉类别的唯一必要知识来自无监督的文本语料库。与之前的零样本学习模型不同,该模型可以同时处理已见和未见类别的混合数据,在具有数千个训练图像的类别上达到最先进的性能,并在未见类别上获得合理的性能。这是通过将文本中的单词分布视为语义空间来理解对象的外观。我们的深度学习模型不需要手动定义单词或图像的语义或视觉特征。图像被映射到与其类别相对应的语义词向量附近,得到的图像嵌入可以用来区分图像是属于已见类别还是未见类别。
2023-10-11 19:16:14 1148
原创 大模型/LLM的涌现能力
涌现: 许多小实体相互作用产生了大实体,大实体展现了组成它的小实体所不具有的特性大语言模型的规模效应:下游任务表现-伸缩法则&&涌现能力左侧任务:随着参数规模增大,知识的增长,效果越来越好右侧任务:涌现能力的一种体现,在参数规模小的时候体现一种随机性,看不出来有没有效果。大部分是由多步构成的一个复杂任务随着模型推大,效果一开始下降,当规模再增大时会上升,原因未知,但是这类任务加入COT就会转化为伸缩法则,效果持续上升。大模型的涌现,很多任务在小规模上不能实现,但是大规模上能做。
2023-10-11 13:28:22 696
原创 c++运算符
int类型–》看首位–》1(负数)–》负数是以补码形式存储–》补码求源码(-1再取反)–》最后四位(1010–>1001–>0110)–》所以 ~uc1 其实是 -6。
2023-10-09 20:17:43 92
原创 c++ 变量、常量、基本数据类型
一个‘0/1’是一位(bit),计算机最小寻址是8位,一个字节(Byte)。一个字节表示的最大数是。有的场景不需要负数范围,而且只表示正数和0范围就会增大一倍。由字母、数字和下划线组成;2.const(建议使用)定义在花括号外:全局变量。定义在花括号内:局部变量。:默认是int类型,
2023-10-09 16:22:12 272
原创 C++简单上手helloworld 以及 vscode找不到文件的可能性原因
**主函数*输出一条语句*/// 提示用户输入姓名cout << "请输入您的姓名:" << endl;// 中文可能会乱码// 用一个变量保存键盘输入的信息int main()// 输出一条语句//调用函数welcome();// 等待键盘输入cin.get();// 等待敲回车 // 在‘cin >> name;’语句中已经敲过回车了cin.get();return 0;
2023-10-08 21:07:53 700
原创 c++简介
源于C,C为开发Unix系统而创建贴近硬件底层面向过程面向过程编程(POP)面向对象编程(OOP)C + 面向对象 = C++贴近底层静态类型语言编译型语言结构化教学语言面向对象编程面向泛型编程功能强大编译:由编译器把整个源码翻译成机器码,最终生成二进制文件,一次性提交给计算机执行。代表:C\C++解释:由解释器将代码逐行解释成机器码,并交给计算机执行。代表:python、javascript。
2023-10-08 20:15:37 142
原创 win11 vscode配置c/c++,使用mingw编译器
2.右上角运行,界面上方会显示选择之前装好的gcc编译器,选择即可。6.cmd输入”where gcc“,如果有路径输出则配置成功。1.编写一个.c文件,会提示装c/c++扩展,安装即可。5.你可以将其换到任意你喜欢的路径,然后配置环境变量。只要将该路径加到系统环境变量的Path里即可。3.从这个界面一直往下滑。4.将下好的文件解压。
2023-10-08 17:13:26 374
原创 python LeetCode 刷题记录 104
给定一个二叉树 root ,返回其最大深度。二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
2023-09-28 16:23:17 206
原创 python 探索分形世界|曼德布洛特|np.frompyfunc()
无边的奇迹源自简单规则的无限重复 ---- 分形之父Benoit B.Mandelbrot。
2023-09-26 22:09:24 449
原创 python LeetCode 刷题记录 100
给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
2023-09-25 21:52:57 202
原创 python LeetCode 88 刷题记录
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n。
2023-09-20 15:12:20 272
原创 python LeetCode 刷题记录 83
给定一个已排序的链表的头 head , 删除所有重复的元素,使每个元素只出现一次。返回 已排序的链表。
2023-09-18 20:59:52 332
原创 python LeetCode 刷题记录 70
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
2023-09-18 19:45:47 191
原创 Post-LN, Pre-LN, Sandwich-LN
文章目录Post-LN, Pre-LN, Sandwich-LN层之间的信息流动 & 层之间的耦合区别Post-LN, Pre-LN, Sandwich-LNPost-LN(后归一化):在Post-LN中,归一化操作是在每个层的计算之后进行的。具体而言,输入首先通过一个层,然后进行归一化操作,最后再传递到下一个层。这种方式可以保持层之间的信息流动,并且在训练过程中可以更好地控制梯度的传播。Pre-LN(前归一化):与Post-LN相反,Pre-LN中的归一化操作是在每个层的计算之前进行的。在
2023-09-17 19:43:22 1140
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人