SLY司赖
码龄5年
求更新 关注
提问 私信
  • 博客:187,953
    社区:62
    188,015
    总访问量
  • 74
    原创
  • 0
    粉丝
  • 0
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2020-03-09

个人简介:一诚抵万恶

博客简介:

weixin_46516647的博客

查看详细资料
个人成就
  • 获得1,115次点赞
  • 内容获得42次评论
  • 获得4,584次收藏
  • 博客总排名15,013名
  • 原力等级
    原力等级
    5
    原力分
    1,518
    本月获得
    1
创作历程
  • 10篇
    2025年
  • 1篇
    2024年
  • 24篇
    2023年
  • 39篇
    2022年
成就勋章
TA的专栏
  • LLM
    7篇
  • Information Technology
    3篇
  • Linux
    3篇
  • development
    8篇
  • software engineering
    12篇
  • C
    1篇
  • teaching certifica
    4篇
  • math
    1篇
  • computer network
    6篇
  • DS
    7篇
  • OS
    15篇
  • python
    1篇
  • network secruity
    1篇
  • blockchain
    4篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 5

兴趣领域 设置
  • Python
    python
  • Java
    java
  • 开发工具
    github
  • 数据结构与算法
    算法数据结构
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

83人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

大模型应用开发之预训练

预训练是研发大语言模型的第一个训练阶段,通过在大规模语料上进行预训练,大语言模型可以获得通用的语言理解与生成能力,掌握较为广泛的世界知识,具备解决众多下游任务的性能潜力1. 数据的收集1)通用文本数据(“主食”)来源:网页(C4 、RefinedWeb、CC-Stories 等);书籍(Books3 、Bookcorpus2等);特点:量大;多样;需要清洗;注意搭配2)专用文本数据(“特色”)
原创
发布博客 2025.05.31 ·
1008 阅读 ·
25 点赞 ·
0 评论 ·
14 收藏

大模型应用开发之RAG

RAG框架通过检索外部知识增强LLM能力,解决幻觉、知识滞后和透明度问题。其核心组件包括向量数据库、嵌入模型、检索模型和LLM,采用检索-重排序-生成流程。关键优化点在于数据处理(清洗、分片、嵌入)、检索策略(混合检索+重排序)和生成策略(Prompt工程与迭代生成)。评估聚焦检索质量(MRR、Recall@k)和生成质量(事实性、相关性),常用RAGAS等专业框架。该技术在企业问答、专业领域和搜索增强中表现突出,显著提升生成结果的可信度与时效性。
原创
发布博客 2025.05.25 ·
654 阅读 ·
12 点赞 ·
0 评论 ·
11 收藏

大模型应用开发之Langchain

LangChain是一个开发框架,用于构建和管理LLM应用,提供七大核心模块:Models(语言模型和文本嵌入)、Chains(流程设计)、Memory(上下文存储)、Tools(功能工具)、Agents(智能代理)、Prompts(指令优化)和Indexes(知识管理)。这些模块协同工作,支持开发者实现多步任务处理、对话管理、数据检索等复杂功能,帮助快速构建基于大语言模型的AI应用。掌握LangChain可独立开发API集成、数据处理和智能代理等工具。
原创
发布博客 2025.05.31 ·
864 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

大模型应用开发之评估

以基础的二分类任务为例,如下混淆矩阵,真正例(True Positive, TP)表示预测类别为正的正样本、假正例(False Positive, FP)表示预测类别为正的负样本、真负例(True Negative, TN)表示预测类别为负的负样本、假负(FalseNegative, FN)表示预测类别为负的正样本。给模型一段自然语言描述的需求(比如“写一个计算斐波那契数列的函数”),看它能不能生成正确的、可执行的代码。如果模型给测试集中的句子分配了较高的概率,说明它很好地捕捉了语言的规律,预测能力强。
原创
发布博客 2025.05.29 ·
753 阅读 ·
26 点赞 ·
0 评论 ·
11 收藏

大模型应用开发之微调与对齐

一、指令微调Instruction Tuning一、指令微调Instruction Tuning1、指令数据大模型就像一个天赋异禀的学生,在前期预训练阶段通过大量的阅读知识积累拥有了大量的见识,但光有天赋知识却不会交流还不行,得有好的教材和老师教它怎么做题、怎么回答问题,这个“教材和老师的角色”,就由来扮演1)指令数据组成清晰地告诉模型要做什么。比如“请回答法国的首都是哪里?给模型一个或多个输入样例,帮助它理解任务格式。比如问题:“巴西的首都是哪里?针对当前任务的具体输入。比如“中国的首都是哪里?
原创
发布博客 2025.05.28 ·
595 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

大模型应用开发之模型架构

Transformer架构是自然语言处理中的核心模型,主要由编码器(Encoder)和解码器(Decoder)组成。编码器的任务是将输入的每个词转化为包含上下文信息的向量表示,通过多头自注意力机制和前馈神经网络实现。解码器则利用编码器的输出和已生成的词,逐步生成目标序列,其结构包括带掩码的多头自注意力机制、多头交叉注意力机制和前馈神经网络。Transformer通过残差连接和层归一化确保训练稳定性和信息有效传递。此外,Transformer还涉及输入编码、位置编码、多头自注意力机制、前馈网络层和归一化等核心
原创
发布博客 2025.05.09 ·
711 阅读 ·
18 点赞 ·
0 评论 ·
31 收藏

大模型应用开发之LLM入门

LLM是指用有大量参数的大型预训练语言模型,在解决各种自然语言处理任务方面表现出强大的能力,甚至可以展现出一些小规模语言模型所不具备的特殊能力
原创
发布博客 2025.04.25 ·
952 阅读 ·
12 点赞 ·
0 评论 ·
18 收藏

教资信息技术之信息与信息技术

1. 信息单位:位(bit)--存放一位二进制数,数据的最小单位;字节(byte)--八个二进制位组成,数据存储的基本单位(计算机内任何形式数据都用二进制)机器数(原反补码)--符号化后的二进制数(存储用补码,一个数值用一个字节表示)·知识表示--将现实世界中的知识或信息转换为计算机能够理解和操作的形式(语义网络:将知识表示为节点和变组成的有向图)3. 二进制与八进制的转换:28三合一(1上方的421做加法);2. 十进制转换为X进制数:除基(X)取余--短除or厂除(小数部分乘基取整)
原创
发布博客 2025.02.15 ·
787 阅读 ·
21 点赞 ·
0 评论 ·
11 收藏

教资信息技术之多媒体技术

RGB模式:Red Green Blue 每种颜色取值范围为0-255,会用各类进制表示不同的颜色,eg红色(255,0,0)/#FF0000;·量化:使用一定大小的数值表示采样后的每个像素点(颜色深度-每个像素所占的二进制位数bit,颜色深度位数代表颜色种类,gif为8位有2^8种颜色,rgb为24位)·锁定:“小锁”按钮--锁定透明像素,锁定图像像素,锁定位置,锁定全部;·硬件平台:声-声音输入A/D,声音输出 D/A;·灰度模式:8位表示,全0为黑,全1为白,1-254为其他级别的灰度。
原创
发布博客 2025.02.16 ·
1035 阅读 ·
15 点赞 ·
0 评论 ·
28 收藏

教资信息技术之数据库技术

完全函数依赖:在R(U)中,如果X→Y,并且对于X的任何一个真子集X’, 都有X’/→Y, 则称Y对X完全函数依赖,记作X→fY,eg(SNo,CNo)→f Grade·部分函数依赖:在R(U)中,如果X→Y,并且对于X的任何一个真子集X’, 都有X’→Y, 则称Y对X完全函数依赖,记作X→pY,eg(SNo,CNo)→p SN。
原创
发布博客 2025.03.03 ·
815 阅读 ·
29 点赞 ·
0 评论 ·
20 收藏

Linux系统常用实操指令总结

·cdcd [参数]切换到指定目录(可以通过相对路径也可以通过绝对路径)eg:cd~ 切换到当前用户的家目录;cd - 返回刚刚所在的目录 cd.. 回到当前目录的上一级目录
原创
发布博客 2023.08.22 ·
398 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

从零开始搭建个人博客网站(hexo框架)

个人博客免费搭建
原创
发布博客 2023.08.11 ·
768 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

kali Linux中更换为阿里镜像源

kali Linux中更换为阿里镜像源
原创
发布博客 2023.11.05 ·
1718 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

代码分析工具understand安装及使用教程

新建一个code文件夹准备存放Understand的工程文件,caldera是要查看的代码。也可以不新建code文件夹,Understand的把工程文件直接存放在caldera里面。查看代码不能像vscode那样直接把文件夹拖入到软件界面中直接打开,要先建一个工程。File > New > Project,点击然后选择要查看的代码文件,点击next。选择安装位置,点击install,等待,点击finish。接下来在Understand软件中新建工程,选择。选择代码的编程语言以及项目的位置。
原创
发布博客 2024.04.17 ·
5260 阅读 ·
13 点赞 ·
0 评论 ·
15 收藏

Basic of Solidity (solidity基础)

Solidity 使用contract定义合约,和其他语言的类(class)很类似,合约本身也是一个数据类型, 称为合约类型,除此之外合约还可以定义事件、自定义类型等。contract Counter { //定义了一个名为 Counter 的合约Solidity 是一个静态类型语言,在定义每个变量时需要声明该变量的类型,定义变量按格式:变量类型变量可见性变量名。变量可见性是可选的,没有显示申明可见性时,会使用缺省值internal。
原创
发布博客 2023.07.08 ·
1124 阅读 ·
3 点赞 ·
1 评论 ·
3 收藏

python基础语法

如需保持父的 __init__() 的继承,添加对父的 __init__() 函数的调用,或者使用super() 函数,它会使子类继承父类的所有方法和属性。Python 使用缩进来指示代码块。thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon") #创建元组。thislist = ["apple", "banana", "cherry","orange", "kiwi", "melon"] #创建列表。
原创
发布博客 2023.07.20 ·
482 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

基于pandoraNext使用chatgpt4

解压安装包后,用编辑器打开config.json文件,将复制的参数找到相应的字段进行粘贴,并保存。在windows中输入PandoraNext.exe回车启动。打开终端,在Linux中输入./PandoraNext启动。在release中选择相应版本操作系统的安装包进行下载。找到License Id并进行复制。获取pandoraNext项目。
原创
发布博客 2023.12.13 ·
2381 阅读 ·
14 点赞 ·
2 评论 ·
12 收藏

基于Hugo 搭建个人博客网站

将 Homebrew 添加到当前终端会话的路径中。前往GitHub上新建一个仓库,注意命名要与github用户名一致。,找到自己喜欢的主题,点击后可以看到下载方法,按照要求进行下载。仓库更新后就可以访问之前设置的域名进行访问了。前者是在您的用户目录下的。至此,hb安装完成。
原创
发布博客 2023.09.05 ·
1260 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

Mac m1芯片基于parallesls desktop安装Ubuntu

创建新的虚拟机,按照PD指引一步一步操作。对于Mac系统,不论VM/PD都需要用。
原创
发布博客 2023.08.18 ·
987 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Ethereum 以太坊基础

Ethereum是一个建立在区块链技术之上的去中心化应用平台。它允许任何人在平台上建立和使用通过区块链技术运行的去中心化应用(DApp)
原创
发布博客 2023.06.29 ·
630 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏
加载更多