摘要:2022 年 8 月 5 日,2022 阿里云生命科学与智能计算峰会在北京望京昆泰酒店举行,圆壹智慧创始人兼首席执行官潘麓蓉博士,带来了题为《The Challenges and Future Directions of AI in pharmaceutical industry》的分享,以下是她的演讲内容整理,供大家阅览:

圆壹智慧创始人兼 CEO 潘麓蓉
美国 NIH 的 4D map 是全球制药行业的行业金标准。以小分子为例,从靶点的识别到先导化合物的发现、优化,从 early discovery 到 development 再到最终的 clinical trial,中间的每一步都已经有非常成熟的方法论、实验平台、理论指导以及监管标准。

然而,该系统的数字化程度非常低,制药行业也是所有行业中数字化程度相对较低的行业。
转化医学、生物标志化合物相关的数据、临床数据、监管数据、医保数据以及临床采样和体外采样的信号数据,都需要由不同的机构和科研人员负责。基于此,制药工业想要在系统上提效,只有两个方法:第一,将整个系统进行重新定义;第二,从过去的历史数据中去掉杂音、找到信号,并用最先进的方法论取代过时的方法论。

上图为药筛流程。从第一步到最后一步需要进行的实验数量决定了最终的系统效率。传统流程基本需要从 2 万个分子筛至一个分子,盲筛则基本需要 200 万个分子作为起点。而如果能实现以 100 个分子作为起点,则整个行业的投入和耗时将得到 80%以上的节省。
以上筛选流程已经沿用多年,但过去 10 年的投入产出比在逐年下降。因此我们需要考虑:如何突破现有的筛选流程?能否通过 AI 帮助提升效率?

严格意义上来说,AI 并不是一种工具,因为工具需要人来使用,而 AI 可以进行自优化,不需要人类帮助也能实现目的。在 AI 的学科定义里,它需要具备像人一样的思考和行为能力,最后还需经过图灵测试等方式的确认。
但将 AI 应用于制药行业,最大的难点在于如何为 AI 定义目标。比如制药问题上,目标可以是优化选择性,也可以是优化整体的体内药效,还可以是优化最终的适用病人群体。如果给予 AI 足够的数据,实际上它可以通过自己的办法实现目标。
因此,人需要做两件事:首先明确目标,其次明确需要喂给 AI 什么样的数据和规则,最终由 AI 负责实现目标。
人工智能本身是一个交叉学科,而制药也是涉及到生物化学、细胞生物学、生理学等多维度信息的学科。如何将众多庞大的学科体系进行高效地融合,是我们面临的最大挑战。

上图涵盖的数据基本涵盖了制药行业所有计算的输入。QM(量子力
2022阿里云峰会上,圆壹智慧CEO潘麓蓉博士探讨了AI在制药领域的挑战,如低数字化程度、数据融合难题,以及AI如何通过目标定义和数据驱动提升效率,包括药物筛选流程优化、多目标优化和跨尺度模型构建。她强调AI在药物研发中的潜力和未来应用前景。
最低0.47元/天 解锁文章
3562

被折叠的 条评论
为什么被折叠?



