K-近邻算法
K近邻算法原理原理
存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
计算公式
举电影分类的例子使用K-近邻算法分类爱情片和动作片

即便不知道未知电影属于哪种类型,我们也可以通过某种方法计算出来。
首先计算未知电影与样本集中与其他电影的距离,通过下面计算公式可以得到各点对应的距离:
得到距离后按照从小到大的顺序排序,最后选取从小到大的K个距离;按照统计结果,预测未知电影为频率高的的电影类型。
实战代码
以点(101,20)为测试目标,k选为3;
# -*- coding: UTF-8 -*-
import numpy as np
import operator
def createDataSet():
#四组二维特征
group = np.array([[1,101],[5,89],[108,5],[115,8]])
#四组特征的标签
labels = ['爱情片','爱情片','动作片','动作片']
return group, labels
def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#二维特征相减后平方
sqDiffMat = diffMat**2
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#python3中用items()替换python2中的iteritems()
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
if __name__ == '__main__':
#创建数据集
group, labels = createDataSet()
#测试集
test = [101,20]
#kNN分类
test_class = classify0(test, group, labels, 3)
#打印分类结果
print(test_class)
运行结果:

测试结果为该未知电影类型预测为动作片。
优缺点
优点:精度高,对异常值不敏感,无数据输入假定。
缺点:计算复杂度高,空间复杂度高。
适用数据范围:数值型和标称型。
本文介绍了K-近邻算法的基本原理,包括计算公式和实战应用。通过实例展示了如何利用K-近邻算法对电影进行分类,同时讨论了算法的优缺点,指出其在精度和异常值处理上的优势,但存在计算复杂度和空间复杂度较高的问题。
1419

被折叠的 条评论
为什么被折叠?



