分布滞后与自回归模型
1 滞后效应与滞后变量模型
1.1 什么是滞后效应
解释变量对被解释变量的影响可能存在持续性或滞后性,也就是说解释变量需要通过一段时间才能完全作用于被解释变量。由于经济活动的惯性,经济变量变化态势往往会延续到本期,形成被解释变量的当期变化同自身过去取值水平相关的情形。
1.2 滞后效应产生的原因
- 心理预期因素
- 技术因素
- 制度因素
1.3 滞后变量模型
滞后变量是指过去时期的、对当前被解释变量产生影响的变量。滞后变量可分为滞后解释变量与滞后被解释变量两类。把滞后变量引入回归模型,这种回归模型称为滞后变量模型。滞后变量模型的一般形式为
Y
t
=
α
+
β
0
X
t
+
β
1
X
t
−
1
+
β
2
X
t
−
2
+
⋯
+
β
s
X
t
−
s
+
γ
1
Y
t
−
1
+
γ
2
Y
t
−
2
+
⋯
+
γ
q
Y
t
−
q
+
u
t
\begin{array}{c} Y_{t}=\alpha+\beta_{0} X_{t}+\beta_{1} X_{t-1}+\beta_{2} X_{t-2}+\cdots+\beta_{s} X_{t-s} \\ +\gamma_{1} Y_{t-1}+\gamma_{2} Y_{t-2}+\cdots+\gamma_{q} Y_{t-q}+u_{t} \end{array}
Yt=α+β0Xt+β1Xt−1+β2Xt−2+⋯+βsXt−s+γ1Yt−1+γ2Yt−2+⋯+γqYt−q+ut
其中s、q 分别为滞后解释变量和滞后被解释变量的滞后期长度。根据滞后长度是否有划分为有限滞后变量模型和无限滞后变量模型。
1.31 分布滞后模型
滞后变量模型仅有滞后解释变量而无滞后被解释变量模型,即
Y
t
=
α
+
β
0
X
t
+
β
1
X
t
−
1
+
β
2
X
t
−
2
+
⋯
+
β
s
X
t
−
s
+
u
t
Y_{t}=\alpha+\beta_{0} X_{t}+\beta_{1} X_{t-1}+\beta_{2} X_{t-2}+\cdots+\beta_{s} X_{t-s}+u_{t}
Yt=α+β0Xt+β1Xt−1+β2Xt−2+⋯+βsXt−s+ut
其中
β
0
\beta_0
β0称为短期效应或短期乘数,表示本期
X
X
X变动一个单位对
Y
Y
Y的影响;
β
i
(
i
=
1
,
2
…
)
\beta_i(i=1,2\dots)
βi(i=1,2…)为延迟乘数或动态乘数,表示过去各期X 变动一个单位对
Y
Y
Y值的影响大小。
∑
i
s
β
i
\sum_i^s\beta_i
∑isβi称为长期乘数或总分布乘数。
1.32 自回归模型
滞后变量模型仅有滞后被解释变量与本期解释变量
X
t
X_t
Xt模型(可以不含
X
X
X),即
Y
t
=
α
+
β
0
X
t
+
γ
1
Y
t
−
1
+
γ
2
Y
t
−
2
+
⋯
+
γ
q
Y
t
−
q
+
u
t
Y_{t}=\alpha+\beta_{0} X_{t}+\gamma_{1} Y_{t-1}+\gamma_{2} Y_{t-2}+\cdots+\gamma_{q} Y_{t-q}+u_{t}
Yt=α+β0Xt+γ1Yt−1+γ2Yt−2+⋯+γqYt−q+ut
称为自回归模型,其中
q
q
q为自回归阶数。
2 分布滞后模型的估计
2.1 分布滞后模型估计的问题
- 自由度问题:随着滞后阶数增加,需要估计的参数增多,样本容量一定时,自由度下降
- 多重共线性问题:滞后变量之间一般存在高度相关
- 滞后长度难以确定
2.2 经验加权估计法
对解释变量的系数赋予一定权数,利用这些权数构成各滞后变量的线性组合,以形成新的变量再应用最小二乘法进行估计。权数分布的确定取决于模型滞后结构的不同类型,常见的滞后结构类型有:
- 递减滞后结构:随着滞后阶数增加,权重递减
- 不变滞后结构:随着滞后阶数增加,权重不变
- Λ \Lambda Λ型滞后结构:随着滞后阶数增加,权重先增后减
评价
经验加权法具有简单易行、不损失自由度、避免多重共线性干扰及参数估计具有一致性等特点。但权数的主观随意性较大。
2.3 阿尔蒙法
为消除多重共线性的影响,阿尔蒙(Almon)提出利用多项式来逼近滞后参数的变化结构,从而减少待估参数的数目。在有限分布滞后模型滞后长度
s
s
s已知的情况下,滞后项系数可以看成是相应滞后期
i
i
i的函数。在以滞后期
i
i
i为横轴、滞后系数取值为纵轴的坐标系中,如果这些滞后系数落在一条光滑曲线上,或近似落在一条光滑曲线上,则可以由一个关于
i
i
i的次数较低的
m
m
m次多项式很好地逼近,即
β
i
=
α
0
+
α
1
i
+
α
2
i
2
+
⋯
+
α
m
i
m
i
=
0
,
1
,
2
,
⋯
,
s
;
m
<
s
\beta_{i}=\alpha_{0}+\alpha_{1} i+\alpha_{2} i^{2}+\cdots+\alpha_{m} i^{m} \quad i=0,1,2, \cdots, s ; \quad m<s
βi=α0+α1i+α2i2+⋯+αmimi=0,1,2,⋯,s;m<s
此式称为阿尔蒙多项式变换。具体地,
i
=
0
β
0
=
α
0
+
α
1
0
+
α
2
0
2
+
⋯
+
α
m
0
m
i
=
1
β
1
=
α
0
+
α
1
1
+
α
2
1
2
+
⋯
+
α
m
1
m
i
=
2
β
2
=
α
0
+
α
1
2
+
α
2
2
2
+
⋯
+
α
m
2
m
…
…
…
…
…
…
…
…
…
i
=
s
β
s
=
α
0
+
α
1
s
+
α
2
S
2
+
⋯
+
α
m
s
m
\begin{array}{cl} i=0 & \beta_{0}=\alpha_{0}+\alpha_{1} 0+\alpha_{2} 0^{2}+\cdots+\alpha_{m} 0^{m} \\ i=1 & \beta_{1}=\alpha_{0}+\alpha_{1} 1+\alpha_{2} 1^{2}+\cdots+\alpha_{m} 1^{m} \\ i=2 & \beta_{2}=\alpha_{0}+\alpha_{1} 2+\alpha_{2} 2^{2}+\cdots+\alpha_{m} 2^{m} \\ & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ i=s & \beta_{s}=\alpha_{0}+\alpha_{1} s+\alpha_{2} S^{2}+\cdots+\alpha_{m} s^{m} \end{array}
i=0i=1i=2i=sβ0=α0+α10+α202+⋯+αm0mβ1=α0+α11+α212+⋯+αm1mβ2=α0+α12+α222+⋯+αm2m………………………βs=α0+α1s+α2S2+⋯+αmsm
代入模型
Y
t
=
α
+
β
0
X
t
+
β
1
X
t
−
1
+
β
2
X
t
−
2
+
⋯
+
β
s
X
t
−
s
+
u
t
Y_{t}=\alpha+\beta_{0} X_{t}+\beta_{1} X_{t-1}+\beta_{2} X_{t-2}+\cdots+\beta_{s} X_{t-s}+u_{t}
Yt=α+β0Xt+β1Xt−1+β2Xt−2+⋯+βsXt−s+ut并整理
Y
t
=
α
+
α
0
(
X
t
+
X
t
−
1
+
X
t
−
2
+
⋯
+
X
t
−
s
)
+
α
1
(
X
t
−
1
+
2
X
t
−
2
+
3
X
t
−
3
⋯
+
s
X
t
−
s
)
+
α
2
(
X
t
−
1
+
2
2
X
t
−
2
+
3
2
X
t
−
3
⋯
+
s
2
X
t
−
s
)
⋮
+
α
m
(
X
t
−
1
+
2
m
X
t
−
2
+
3
m
X
t
−
3
⋯
+
s
m
X
t
−
s
)
+
u
t
\begin{aligned} Y_{t}=\alpha &+\alpha_{0}\left(X_{t}+X_{t-1}+X_{t-2}+\cdots+X_{t-s}\right) \\ &+\alpha_{1}\left(X_{t-1}+2 X_{t-2}+3 X_{t-3} \cdots+s X_{t-s}\right) \\ &+\alpha_{2}\left(X_{t-1}+2^{2} X_{t-2}+3^{2} X_{t-3} \cdots+s^{2} X_{t-s}\right) \\ & \vdots \\ &+\alpha_{m}\left(X_{t-1}+2^{m} X_{t-2}+3^{m} X_{t-3} \cdots+s^{m} X_{t-s}\right) \\ &+u_{t} \end{aligned}
Yt=α+α0(Xt+Xt−1+Xt−2+⋯+Xt−s)+α1(Xt−1+2Xt−2+3Xt−3⋯+sXt−s)+α2(Xt−1+22Xt−2+32Xt−3⋯+s2Xt−s)⋮+αm(Xt−1+2mXt−2+3mXt−3⋯+smXt−s)+ut
即
Y
t
=
α
+
α
0
Z
0
t
+
α
1
Z
1
t
+
α
2
Z
2
t
+
⋯
+
α
m
Z
m
t
+
u
t
(1)
Y_{t}=\alpha+\alpha_{0} Z_{0 t}+\alpha_{1} Z_{1 t}+\alpha_{2} Z_{2 t}+\cdots+\alpha_{m} Z_{m t}+u_{t}\tag{1}
Yt=α+α0Z0t+α1Z1t+α2Z2t+⋯+αmZmt+ut(1)
其中
Z
0
t
=
X
t
+
X
t
−
1
+
X
t
−
2
+
⋯
+
X
t
−
s
Z
1
t
=
X
t
−
1
+
2
X
t
−
2
+
3
X
t
−
3
⋯
+
s
X
t
−
s
Z
2
t
=
X
t
−
1
+
2
2
X
t
−
2
+
3
2
X
t
−
3
⋯
+
s
2
X
t
−
s
⋮
Z
m
t
=
X
t
−
1
+
2
m
X
t
−
2
+
3
m
X
t
−
3
⋯
+
s
m
X
t
−
s
\begin{array}{l} Z_{0 t}=X_{t}+X_{t-1}+X_{t-2}+\cdots+X_{t-s} \\ Z_{1 t}=X_{t-1}+2 X_{t-2}+3 X_{t-3} \cdots+s X_{t-s} \\ Z_{2 t}=X_{t-1}+2^{2} X_{t-2}+3^{2} X_{t-3} \cdots+s^{2} X_{t-s} \\ \vdots \\ Z_{m t}=X_{t-1}+2^{m} X_{t-2}+3^{m} X_{t-3} \cdots+s^{m} X_{t-s} \end{array}
Z0t=Xt+Xt−1+Xt−2+⋯+Xt−sZ1t=Xt−1+2Xt−2+3Xt−3⋯+sXt−sZ2t=Xt−1+22Xt−2+32Xt−3⋯+s2Xt−s⋮Zmt=Xt−1+2mXt−2+3mXt−3⋯+smXt−s
为滞后变量的线性组合变量。若(1)式扰动项
μ
t
\mu_t
μt满足经典假设条件,则可以采取OLS估计参数
α
i
(
i
=
0
,
1
,
…
m
)
\alpha_i(i=0,1,\dots m)
αi(i=0,1,…m)。在实际操作中
m
=
2
,
3
m = 2,3
m=2,3很少取到4.
3 自回归模型构建
3.1 库伊克(Koyck)模型
对于如下无限分布滞后模型
Y
t
=
α
+
β
0
X
t
+
β
1
X
t
−
1
+
β
2
X
t
−
2
+
⋯
+
u
t
(2)
Y_{t}=\alpha+\beta_{0} X_{t}+\beta_{1} X_{t-1}+\beta_{2} X_{t-2}+\cdots+u_{t}\tag{2}
Yt=α+β0Xt+β1Xt−1+β2Xt−2+⋯+ut(2)
可以假定滞后解释变量
X
t
−
i
X_{t-i}
Xt−i对被解释变量
Y
Y
Y的影响随着滞后期
i
(
i
=
0
,
1
,
2
,
…
)
i(i=0,1,2,\dots)
i(i=0,1,2,…)的增加而
按几何级数衰减,即
β
i
=
β
0
λ
i
,
0
<
λ
<
1
,
i
=
0
,
1
,
2
,
⋯
(3)
\beta_{i}=\beta_{0} \lambda^{i} , 0<\lambda<1 ,i=0,1,2, \cdots\tag{3}
βi=β0λi,0<λ<1,i=0,1,2,⋯(3)
其中
β
0
\beta_0
β0为常数,公比
λ
\lambda
λ为待估参数。
λ
\lambda
λ值的大小决定了滞后衰减的速度,
λ
\lambda
λ值越接近零,衰减速度越快,通常称
λ
\lambda
λ为分布滞后衰减率,称
1
−
λ
1-\lambda
1−λ为调整速度。将(3)代入(2)得
Y
t
=
α
+
β
0
X
t
+
β
0
λ
X
t
−
1
+
β
0
λ
2
X
t
−
2
+
⋯
+
u
t
=
α
+
β
0
(
X
t
+
λ
X
t
−
1
+
λ
2
X
t
−
2
+
⋯
)
+
u
t
=
α
+
β
0
∑
i
=
0
∞
λ
i
X
t
−
i
+
u
t
(4)
\begin{aligned} Y_{t} &=\alpha+\beta_{0} X_{t}+\beta_{0} \lambda X_{t-1}+\beta_{0} \lambda^{2} X_{t-2}+\cdots+u_{t} \\ &=\alpha+\beta_{0}\left(X_{t}+\lambda X_{t-1}+\lambda^{2} X_{t-2}+\cdots\right)+u_{t} \\ &=\alpha+\beta_{0} \sum_{i=0}^{\infty} \lambda^{i} X_{t-i}+u_{t} \end{aligned}\tag{4}
Yt=α+β0Xt+β0λXt−1+β0λ2Xt−2+⋯+ut=α+β0(Xt+λXt−1+λ2Xt−2+⋯)+ut=α+β0i=0∑∞λiXt−i+ut(4)
将(4)滞后一期,并乘以
λ
\lambda
λ,
Y
t
Y_t
Yt减之
Y
t
−
λ
Y
t
−
1
=
(
α
+
β
0
∑
i
=
0
∞
λ
i
X
t
−
i
+
u
t
)
−
(
λ
α
+
β
0
∑
i
=
1
∞
λ
i
X
t
−
i
+
λ
u
t
−
1
)
=
α
(
1
−
λ
)
+
β
0
X
t
+
(
u
t
−
λ
u
t
−
1
)
\begin{aligned} Y_{t}-\lambda Y_{t-1} &=\left(\alpha+\beta_{0} \sum_{i=0}^{\infty} \lambda^{i} X_{t-i}+u_{t}\right)-\left(\lambda \alpha+\beta_{0} \sum_{i=1}^{\infty} \lambda^{i} X_{t-i}+\lambda u_{t-1}\right) \\ \\ &=\alpha(1-\lambda)+\beta_{0} X_{t}+\left(u_{t}-\lambda u_{t-1}\right) \end{aligned}
Yt−λYt−1=(α+β0i=0∑∞λiXt−i+ut)−(λα+β0i=1∑∞λiXt−i+λut−1)=α(1−λ)+β0Xt+(ut−λut−1)
即
Y
t
=
α
(
1
−
λ
)
+
β
0
X
t
+
λ
Y
t
−
1
+
(
u
t
−
λ
u
t
−
1
)
Y_{t}=\alpha(1-\lambda)+\beta_{0} X_{t}+\lambda Y_{t-1}+\left(u_{t}-\lambda u_{t-1}\right)
Yt=α(1−λ)+β0Xt+λYt−1+(ut−λut−1)
上述变换过程称为库伊克变换。令
α
∗
=
(
1
−
λ
)
α
,
β
0
∗
=
β
0
,
β
1
∗
=
λ
,
u
t
∗
=
u
t
−
λ
u
t
−
1
\alpha^{*}=(1-\lambda) \alpha \quad, \quad \beta_{0}^{*}=\beta_{0} \quad, \quad \beta_{1}^{*}=\lambda \quad, \quad u_{t}^{*}=u_{t}-\lambda u_{t-1}
α∗=(1−λ)α,β0∗=β0,β1∗=λ,ut∗=ut−λut−1则库伊克模型为
Y
t
=
α
∗
+
β
0
∗
X
t
+
β
1
∗
Y
t
−
1
+
u
t
∗
Y_{t}=\alpha^{*}+\beta_{0}^{*} X_{t}+\beta_{1}^{*} Y_{t-1}+u_{t}^{*}
Yt=α∗+β0∗Xt+β1∗Yt−1+ut∗
这是一个
A
R
(
1
)
AR(1)
AR(1)过程。库伊克(Koyck)模型也存在局限
- 假定无限滞后分布呈几何滞后结构,不具有普适性
- 新模型的随机扰动项 μ t ∗ \mu_t^* μt∗存在一阶自相关,且与解释变量 Y t − 1 Y_{t-1} Yt−1相关。
- 将随机变量 Y t − 1 Y_{t-1} Yt−1作为解释变量引入了模型,不一定符合基本假定。
- 库伊克变换是纯粹的数学运算结果,缺乏经济理论依据。
3.2 自适应预期模型
将解释变量预期值引入模型建立“期望模型”。例如,包含一个预期解释变量的“期望模型”可以表现为如下形式:
Y
t
=
α
+
β
X
t
∗
+
u
t
(5)
Y_{t}=\alpha+\beta X_{t}^{*}+u_{t}\tag{5}
Yt=α+βXt∗+ut(5)
其中
Y
t
Y_t
Yt为被解释变量,
X
t
∗
X_t^*
Xt∗为解释变量预期值,
μ
t
\mu_t
μt为随机扰动项。自适应预期假定认为,经济活动主体对某经济变量的预期,是通过一种简单的学习过程而行成的,其机理是,经济活动主体会根据自己过去在作预期时所犯错误的程度,来修正他们以后每一时期的预期,即按照过去预测偏差的某一比例对当前期望进行修正,使其适应新的经济环境。用数学式子表示就是
X
t
∗
=
X
t
−
1
∗
+
γ
(
X
t
−
X
t
−
1
∗
)
(6)
X_{t}^{*}=X_{t-1}^{*}+\gamma\left(X_{t}-X_{t-1}^{*}\right)\tag{6}
Xt∗=Xt−1∗+γ(Xt−Xt−1∗)(6)
其中参数
λ
\lambda
λ为调节系数,也称为适应系数。将(6)代入(5)得
Y
t
=
α
+
β
[
γ
X
t
+
(
1
−
γ
)
X
t
−
1
∗
]
+
u
t
Y_{t}=\alpha+\beta\left[\gamma X_{t}+(1-\gamma) X_{t-1}^{*}\right]+u_{t}
Yt=α+β[γXt+(1−γ)Xt−1∗]+ut
通过变形得到
Y
t
=
α
∗
+
β
0
∗
X
t
+
β
1
∗
Y
t
−
1
+
u
t
∗
Y_{t}=\alpha^{*}+\beta_{0}^{*} X_{t}+\beta_{1}^{*} Y_{t-1}+u_{t}^{*}
Yt=α∗+β0∗Xt+β1∗Yt−1+ut∗
其中
α
∗
=
γ
α
,
β
0
∗
=
γ
β
,
β
1
∗
=
1
−
γ
,
u
t
∗
=
u
t
−
(
1
−
γ
)
u
t
−
1
\alpha^{*}=\gamma \alpha, \quad \beta_{0}^{*}=\gamma \beta, \quad \beta_{1}^{*}=1-\gamma, \quad u_{t}^{*}=u_{t}-(1-\gamma) u_{t-1}
α∗=γα,β0∗=γβ,β1∗=1−γ,ut∗=ut−(1−γ)ut−1这是一个
A
R
(
1
)
AR(1)
AR(1)过程。
3.3 局部调整模型
解释变量的现值影响着被解释变量的预期值,即存在如下关系
Y
t
∗
=
α
+
β
X
t
+
u
t
(7)
Y_{t}^{*}=\alpha+\beta X_{t}+u_{t}\tag{7}
Yt∗=α+βXt+ut(7)
其中,局部调整假设认为,被解释变量的实际变化仅仅是预期变化的一部分,即
Y
t
−
Y
t
−
1
=
δ
(
Y
t
∗
−
Y
t
−
1
)
(8)
Y_{t}-Y_{t-1}=\delta\left(Y_{t}^{*}-Y_{t-1}\right)\tag{8}
Yt−Yt−1=δ(Yt∗−Yt−1)(8)
其中
δ
\delta
δ为调整系数,它代表调整速度。
δ
\delta
δ越接近1,表明调整到预期最佳水平的速度越快。若
δ
=
1
\delta =1
δ=1,则
Y
t
=
Y
t
∗
Y_t = Y_t^*
Yt=Yt∗,表明实际变动等于预期变动,调整在当期完全实现。若
δ
=
0
\delta =0
δ=0,则
Y
t
=
Y
t
−
1
Y_t = Y_{t-1}
Yt=Yt−1表明本期值与上期值一样,完全没有调整。一般情况下,
0
<
δ
<
1
0<\delta<1
0<δ<1。将(8)变型并将(7)代入(8)得
Y
t
=
α
∗
+
β
0
∗
X
t
+
β
1
∗
Y
t
−
1
+
u
t
∗
Y_{t}=\alpha^{*}+\beta_{0}^{*} X_{t}+\beta_{1}^{*} Y_{t-1}+u_{t}^{*}
Yt=α∗+β0∗Xt+β1∗Yt−1+ut∗
其中
α
∗
=
δ
α
,
β
0
∗
=
δ
β
,
β
1
∗
=
1
−
δ
,
u
t
∗
=
δ
u
t
\alpha^{*}=\delta \alpha, \quad \beta_{0}^{*}=\delta \beta, \quad \beta_{1}^{*}=1-\delta, \quad u_{t}^{*}=\delta u_{t}
α∗=δα,β0∗=δβ,β1∗=1−δ,ut∗=δut
库伊克模型、自适应预期模型与局部调整模型的最终形式,都是一阶自回归形式,这样,对这三类模型的估计就转化为对相应一阶自回归模型的估计。
4 自回归模型的估计
4.1 自回归模型的困难
关于随机扰动项
-
库伊克模型: u t ∗ = u t − λ u t − 1 u_{t}^{*}=u_{t}-\lambda u_{t-1} ut∗=ut−λut−1
-
自适应预期模型: u t ∗ = u t − ( 1 − γ ) u t − 1 u_{t}^{*}=u_{t}-(1-\gamma) u_{t-1} ut∗=ut−(1−γ)ut−1
-
局部调整模型: u t ∗ = δ u t u_{t}^{*}=\delta u_{t} ut∗=δut
假定上述三种原中随机扰动项
μ
t
\mu_t
μt满足古典假定,即
E
(
μ
t
)
=
0
E(\mu_t) = 0
E(μt)=0,
V
a
r
(
μ
t
)
=
σ
2
Var(\mu_t) = \sigma^2
Var(μt)=σ2,
C
o
v
(
μ
t
,
μ
s
)
=
0
(
t
≠
s
)
Cov(\mu_t,\mu_{s}) =0 (t\ne s)
Cov(μt,μs)=0(t=s)。对于库伊克模型,存在自相关性与内生性
Cov
(
u
t
∗
,
u
t
−
1
∗
)
=
E
(
u
t
−
λ
u
t
−
1
−
E
(
u
t
−
λ
u
t
−
1
)
)
(
u
t
−
1
−
λ
u
t
−
2
−
E
(
u
t
−
1
−
λ
u
t
−
2
)
)
=
E
(
u
t
u
t
−
1
)
−
λ
E
u
t
−
1
2
−
λ
E
(
u
t
u
t
−
2
)
+
λ
2
E
(
u
t
−
1
u
t
−
2
)
=
−
λ
E
u
t
−
1
2
=
−
λ
σ
2
≠
0
\begin{array}{l} \operatorname{Cov}\left(u_{t}^{*}, u_{t-1}^{*}\right)=E\left(u_{t}-\lambda u_{t-1}-E\left(u_{t}-\lambda u_{t-1}\right)\right)\left(u_{t-1}-\lambda u_{t-2}-E\left(u_{t-1}-\lambda u_{t-2}\right)\right) \\ \\ =E\left(u_{t} u_{t-1}\right)-\lambda E u_{t-1}^{2}-\lambda E\left(u_{t} u_{t-2}\right)+\lambda^{2} E\left(u_{t-1} u_{t-2}\right) \\ \\ =-\lambda E u_{t-1}^{2}=-\lambda \sigma^{2} \neq 0 \end{array}
Cov(ut∗,ut−1∗)=E(ut−λut−1−E(ut−λut−1))(ut−1−λut−2−E(ut−1−λut−2))=E(utut−1)−λEut−12−λE(utut−2)+λ2E(ut−1ut−2)=−λEut−12=−λσ2=0
Cov
(
Y
t
−
1
,
u
t
∗
)
=
Cov
(
Y
t
−
1
,
u
t
−
λ
u
t
−
1
)
=
Cov
(
Y
t
−
1
,
u
t
)
−
λ
Cov
(
Y
t
−
1
,
u
t
−
1
)
−
λ
Cov
(
Y
t
−
1
,
u
t
−
1
)
≠
0
\begin{array}{l} \operatorname{Cov}\left(Y_{t-1}, u_{t}^{*}\right)=\operatorname{Cov}\left(Y_{t-1}, u_{t}-\lambda u_{t-1}\right) =\operatorname{Cov}\left(Y_{t-1}, u_{t}\right)-\lambda \operatorname{Cov}\left(Y_{t-1}, u_{t-1}\right) \\-\lambda \operatorname{Cov}\left(Y_{t-1}, u_{t-1}\right) \neq 0 \end{array}
Cov(Yt−1,ut∗)=Cov(Yt−1,ut−λut−1)=Cov(Yt−1,ut)−λCov(Yt−1,ut−1)−λCov(Yt−1,ut−1)=0
对于自适应预期模型也存在自相关与内生性,即
Cov
(
u
t
∗
,
u
t
−
1
∗
)
≠
0
;
Cov
(
u
t
∗
,
Y
t
−
1
)
≠
0
\operatorname{Cov}\left(u_{t}^{*}, u_{t-1}^{*}\right) \neq 0;\operatorname{Cov}\left(u_{t}^{*}, Y_{t-1}\right) \neq 0
Cov(ut∗,ut−1∗)=0;Cov(ut∗,Yt−1)=0
局部调整模型不存在自相关与内生性
Cov
(
u
t
∗
,
u
t
−
1
∗
)
=
E
(
δ
u
t
−
E
(
δ
u
t
)
)
(
δ
u
t
−
1
−
E
(
δ
u
t
−
1
)
)
=
δ
2
E
(
u
t
u
t
−
1
)
=
0
Cov
(
Y
t
−
1
,
u
t
∗
)
=
Cov
(
Y
t
−
1
,
δ
u
t
)
=
δ
Cov
(
Y
t
−
1
,
u
t
)
=
0
\begin{array}{l} \operatorname{Cov}\left(u_{t}^{*}, u_{t-1}^{*}\right)=E\left(\delta u_{t}-E\left(\delta u_{t}\right)\right)\left(\delta u_{t-1}-E\left(\delta u_{t-1}\right)\right)=\delta^{2} E\left(u_{t} u_{t-1}\right)=0 \\ \\ \operatorname{Cov}\left(Y_{t-1}, u_{t}^{*}\right)=\operatorname{Cov}\left(Y_{t-1}, \delta u_{t}\right)=\delta \operatorname{Cov}\left(Y_{t-1}, u_{t}\right)=0 \end{array}
Cov(ut∗,ut−1∗)=E(δut−E(δut))(δut−1−E(δut−1))=δ2E(utut−1)=0Cov(Yt−1,ut∗)=Cov(Yt−1,δut)=δCov(Yt−1,ut)=0
由上述模型可知,自回归模型可能存在内生性与自相关问题。为此可以通过工具变量法解决。
4.2工具变量法
工具变量的选择应满足如下条件:
- 与所代替的解释变量高度相关;
- 与随机扰动项不相关;
- 与其它解释变量不相关,以免出现多重共线性。
可以证明,利用工具变量法所得到的参数估计是一致估计。在时间序列中,可用
Y
^
t
−
1
\hat{Y}_{t-1}
Y^t−1作为
Y
t
−
1
Y_{t-1}
Yt−1的工具变量,于是一阶自回归模型可写为
Y
t
=
α
∗
+
β
0
∗
X
t
+
β
1
∗
Y
^
t
−
1
+
u
t
∗
Y_{t}=\alpha^{*}+\beta_{0}^{*} X_{t}+\beta_{1}^{*} \hat{Y}_{t-1}+u_{t}^{*}
Yt=α∗+β0∗Xt+β1∗Y^t−1+ut∗
其中
Y
^
t
−
1
\hat{Y}_{t-1}
Y^t−1是
Y
^
t
\hat{Y}_t
Y^t的滞后值,
Y
^
t
\hat{Y}_t
Y^t如下确定
Y
^
t
=
c
^
0
+
c
^
1
X
t
−
1
+
c
^
2
X
t
−
2
+
⋯
+
c
^
s
X
t
−
s
\hat{Y}_{t}=\hat{c}_{0}+\hat{c}_{1} X_{t-1}+\hat{c}_{2} X_{t-2}+\cdots+\hat{c}_{s} X_{t-s}
Y^t=c^0+c^1Xt−1+c^2Xt−2+⋯+c^sXt−s
s
s
s一般取2,3。
4.3 德宾h-检验
若自变量包括被解释变量滞后值,则DW检验不再适用。为此,德宾提出了检验一阶自相关的
h
h
h统计量检验法。h统计量为
h
=
ρ
^
n
1
−
n
Var
(
β
^
1
∗
)
=
(
1
−
d
2
)
n
1
−
n
Var
(
β
^
1
∗
)
h=\hat{\rho} \sqrt{\frac{n}{1-n \operatorname{Var}\left(\hat{\beta}_{1}^{*}\right)}}=\left(1-\frac{d}{2}\right) \sqrt{\frac{n}{1-n \operatorname{Var}\left(\hat{\beta}_{1}^{*}\right)}}
h=ρ^1−nVar(β^1∗)n=(1−2d)1−nVar(β^1∗)n
其中,
ρ
^
\hat{\rho}
ρ^为随机扰动项一阶自相关系数
ρ
\rho
ρ的估计量,d为DW统计量,
n
n
n为样本容量,
V
a
r
(
β
^
1
∗
)
{Var}\left(\hat{\beta}_{1}^{*}\right)
Var(β^1∗)为滞后被解释变量
Y
t
−
1
Y_{t-1}
Yt−1的回归系数的估计方差。德宾证明了在
ρ
=
0
\rho = 0
ρ=0的假定下,
h
h
h统计量的极限分布为标准正态分布。在大样本情况下,可以用
h
h
h统计量值判断随机扰动项是否存在一阶自相关
- 对一阶自回归方程
Y t = α ∗ + β 0 ∗ X t + β 1 ∗ Y t − 1 + u t ∗ Y_{t}=\alpha^{*}+\beta_{0}^{*} X_{t}+\beta_{1}^{*} Y_{t-1}+u_{t}^{*} Yt=α∗+β0∗Xt+β1∗Yt−1+ut∗
直接进行最小二乘估计,得到 V a r ( β ^ 1 ∗ ) {Var}\left(\hat{\beta}_{1}^{*}\right) Var(β^1∗)及 d d d统计量值。将 V a r ( β ^ 1 ∗ ) {Var}\left(\hat{\beta}_{1}^{*}\right) Var(β^1∗), d d d及样本容量 n n n代入h 统计量值。给定显著性水平 α \alpha α,查标准正态分布表得临界值 h α h_\alpha hα。若 ∣ h ∣ > h α |h|>h_\alpha ∣h∣>hα,则拒绝原假设 ρ = 0 \rho = 0 ρ=0,反之不拒绝。
参考文献
庞皓. 计量经济学[M].科学出版社