1220. 生命之树
考察要点:树形DP
题目要求
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集 S,使得对于 S 中的任意两个点 a,b,都存在一个点列 {a,v1,v2,…,vk,b} 使得这个点列中的每个点都是 S 里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得 S 中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过 atm 的努力,他已经知道了上帝给每棵树上每个节点上的整数。
但是由于 atm 不擅长计算,他不知道怎样有效的求评分。
他需要你为他写一个程序来计算一棵树的分数。
输入格式
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n−1 行,每行 2 个整数 u,v,表示存在一条 u 到 v 的边。
由于这是一棵树,所以是不存在环的。
树的节点编号从 1 到 n。
输出格式
输出一行一个数,表示上帝给这棵树的分数。
数据范围
1≤n≤105,
每个节点的评分的绝对值均不超过 106。
输入样例:
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
输出样例:
8
题目地址:https://www.acwing.com/problem/content/1222/
解析:此题有点难度,是树形DP,解题思路也是从计算出根结结点的最大值,就需要子结点的最大值,一直往下深度遍历。就是如果子结点(包括叶子结点)大于0就加上。最后就是最大值了
代码思路 :使用邻接表的方式存储数,头插法方式添加邻接表,
h[u]表示数字 u 的头指针,值为下一个数的下标,
e[下标]就是(这个数A)的值,
ne[下标]是与(这个数A)连接的下一个数,值为下一个数的下标,末尾会直线-1表示结束
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010, M = N * 2;
int n;
int w[N];
int h[N], e[M], ne[M], idx;
LL f[N]; //
void add(int a, int b)
{
e[idx] = b; //将a连接的 b 存于 e[idx]
ne[idx] = h[a]; //新增结点 b 指向 头结点的指向
h[a] = idx ++ ; //头结点 指向 新增结点; idx ++ 便于存下一个数
//整个就是一个邻接表的头插法
}
void dfs(int u, int father) //以每个结点作为根节点 然后算出最大的值
{
f[u] = w[u];
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (j != father) //避免往回搜索
{
dfs(j, u);
f[u] += max(0ll, f[j]); //0 LL 需要大于0的才加起来
}
}
}
int main()
{
scanf("%d", &n);
memset(h, -1, sizeof h); //头结点初始化 都没有指向的值 都置为-1
for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);
for (int i = 0; i < n - 1; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
dfs(1, -1);
// LL res = f[1];
// for (int i = 2; i <= n; i ++ ) res = max(res, f[i]);
//由于蓝桥杯里面小于 0 就输出0 所以res 一开始置为0
//但是题目的s是非空结点集?
LL res = 0;
for (int i = 1; i <= n; i ++ ) res = max(res, f[i]);
printf("%lld\n", res);
return 0;
}
本题:1220. 生命之树
代码参考:作者:yxc