论文作者:Peng Jiang等人 | 编辑:3DCV
添加微信:dddvision,备注:3D目标检测,拉你入群。文末附行业细分群
0. 这篇文章干了啥?
一句话总结:这篇文章提出了3DGS-ReLoc,实现了3D GS地图中的视觉重定位。
这篇文章采用3DGS作为主要的地图表示,利用激光雷达启动3DGS表示的训练,从而实现了大规模、几何精确的地图生成。这种与激光雷达的初始训练显著提高了系统创建详细和精确环境模型的能力,对于自动驾驶车辆中的先进感知系统至关重要。此外,为了解决高GPU内存消耗挑战,作者将3DGS地图分割为2D体素,并利用KD树进行高效的空间查询的策略。
下面一起来阅读一下这项工作~
1. 论文信息
标题:3DGS-ReLoc: 3D Gaussian Splatting for Map Representation and Visual ReLocalization
作者:Peng Jiang, Gaurav Pandey, Srikanth Saripalli
机构:Texas A&M University
原文链接:https://arxiv.org/abs/2403.11367
2. 摘要
本文提
该研究提出3DGS-ReLoc系统,利用3D GS和LiDAR数据创建高精度地图,实现视觉重定位。3DGS地图通过激光雷达启动训练,有效处理GPU内存消耗,通过2D体素和KD树实现高效查询。实验表明,该方法在初始重定位和精确定位中展现出高准确性和鲁棒性,适用于复杂环境的自动驾驶定位任务。
订阅专栏 解锁全文

174

被折叠的 条评论
为什么被折叠?



