作者丨小飞飞
来源丨计算机视觉工坊

作者机构:HKU
项目主页:[https://github.com/hku-mars/ikd-Tree.git)
k-d树是一种常用的多维数据结构,它可以用于范围搜索、最近邻搜索等问题。但是,在实际应用中,我们经常需要对动态数据进行查询和修改操作。这时候,传统的k-d树就显得力不从心了。为了解决这个问题,研究人员提出了动态k-d树(Dynamic k-d Tree)这一概念。与传统的k-d树不同,动态k-d树可以支持插入、删除和修改操作,并且能够保持平衡状态。动态k-d树可以用于各种多维数据结构问题,例如范围搜索、最近邻搜索等。本文将介绍动态k-d树的基本原理、实现方法。
1 基本原理
1.1 k-d树
首先,我们来回顾一下传统的k-d树。k-d树是一种二叉搜索树,它将每个节点表示为一个超矩形,并按照某种规则将超矩形划分成两个子区域。具体来说,k-d树的构建过程如下:
-
选择一个维度d,将数据集按照第d个维度的值进行排序。
-
选择中位数作为根节点,并将数据集分成两个子集。左子集包含小于中位数的所有数据,右子集包含大于中位数的所有数据。
-
对
ikd-Tree是一种适用于动态数据的k-d树变体,尤其在激光雷达SLAM中表现出高效性能。它支持插入、删除和修改操作,能保持平衡状态,优化了范围搜索和最近邻搜索。动态k-d树通过增量更新、盒式操作和动态重新平衡来处理动态数据,以适应机器人运动规划等应用需求。
订阅专栏 解锁全文
240

被折叠的 条评论
为什么被折叠?



