什么是SLAM?
SLAM,即同时定位与地图构建技术,SLAM可以让机器人、无人机和其他自动化系统能够在未知环境中同时进行自我定位和环境映射。

为什么是NeRF-Based SLAM?

传统CG将输入图像重新投影再融合到新的视图摄像机中,利用几何结构来进行重投影。在很多情况下,传统CG方法重建地图都能有相当好的效果,但是对于地图上的未知区域,进行三维重建恢复就有些困难了。
深度学习很早就在应用在重建方面。Volumetric 表达由Soft3D提出,随后与Volumetric ray-marching 相结合的深度学习技术出现,这是一种基于连续可微密度场的Geometry(几何)表示方法。
神经辐射场引入了Importance Sampling(重要性采样)和Positional
本文探讨了SLAM技术,特别是NeRF-Based SLAM和Gaussian-Based SLAM。NeRF方法在三维重建上取得显著成果,但存在效率问题。Gaussian-Based SLAM则解决了这些问题,提供快速渲染、明确空间范围的建图和显式地图编辑能力,适合资源有限的机器人系统。课程旨在教授NeRF/Gaussian SLAM原理和实现。
订阅专栏 解锁全文
370

被折叠的 条评论
为什么被折叠?



