亚马逊云科技:生成式AI的“助教伴生”

87a45a67c8f9d07f9ee70fca6c899784.jpeg

关键字: [出海日城市巡展, Amazon Bedrock, 生成式Ai教育应用, 大模型教学辅助, 多模态课堂交互, 个性化学习体验, 智能作业评阅]

本文字数: 2600, 阅读完需: 13 分钟

导读

在本次演讲中,讲者介绍了生成式AI在教育行业的应用场景和案例。他解释了生成式AI大模型的工作原理和优势,如海量数据训练、参数量大、上下文长度长等,使其在复杂任务、多语种、多模态等方面表现出色。讲者分享了AI助教、智能检索、作文辅助、课堂问答等具体应用案例,展示了生成式AI如何提高教学效率、个性化体验和学习参与度。最后,讲者介绍了亚马逊在生成式AI领域的产品和服务,包括底层基础设施、中间服务层和SaaS服务,为企业提供全面的解决方案。

演讲精华

以下是小编为您整理的本次演讲的精华,共2300字,阅读时间大约是12分钟。

在本土如何利用生成式AI的技术和产品,帮助我们进行业务创新和实践?我将围绕教育行业里面生成式AI技术本身的实际样例和案例,围绕技术本身,包括我们的产品形态给大家做一个展示。

刚前面的两个环节里面,包括校长还有我们的刘老师,都从非常宏观的角度,还有具象的角度,给大家展开了在教育行业的这些变革,大家的实践,还有我们的一些观察。在下一个环节里,我将主要给大家讲一些实际的场景,让大家从生成式AI的趋势和未来方向上,看到它与我们实际业务实践的结合是什么样子的。

整体来看,根据麦肯锡的报告预测,未来在收入和成本上,焦点将转移到整体的营收增长和成本提效等数字。但这些数字在教育客户的具体生产环节中会产生什么影响,我们还需进一步观察。从报告中可以看到,在营销、软件研发、销售体系、供应链等不同环节,生成式AI对不同行业的影响程度有所不同,其中对教育行业的影响尤为显著,尤其是在供应链运营、营销、产品研发和软件工程等方面。

为什么生成式AI会对这些领域产生如此大的影响?我们来看一下,生成式AI技术与以前的传统机器学习有什么不同。以前解决一个翻译任务,就需要专门的翻译模型,比如百度翻译、火山引擎的翻译、Google翻译等,每个任务都需要特定的模型。但在生成式AI时代,由于有海量数据进行训练,模型能够涌现出处理非常复杂任务的能力。之所以被称为大模型或基础模型,是因为它的参数量极大,可以达到数亿级,而且训练数据量也非常大。

我们对比一下传统机器学习模型和生成式AI基础大模型的不同之处。传统模型需要针对特定任务整理语料,然后在该任务的模型上进行训练,才能处理该任务。但基础大模型不需要这个过程,它前面不用专门整理特定任务的模型,就可以放到基础模型上进行训练,然后它就可以处理非常多的任务,这是它能力的一个体现。

结合在线教育领域与生成式AI技术的结合点,我将从内容生成、个性化体验、参与度积极性等角度举一些案例。首先看一个动态图,这张图片来自A16Z投资机构,它在去年发布了生成式AI时代下的TOP 50应用,其中约1/3是情感陪伴类应用,还有大量图片和视频生成类应用。在TOP 50中,教育技术领域占比14%,其中就包括了作业帮的QuestionAI等知名应用。

这些应用主要解决了哪些任务?我们看一个实际的AI助教场景。每天在家里,可能会看到孩子在与虚拟人物或卡通人物进行实时交互,发音后对方会给出打分。但常常会出现打分不准、语音识别不准、判别不准的情况。在这个场景下,AI助教可以帮助识别语音,将语音转换为文本,然后由大模型针对发音进行打分。打分过程中,它会告诉你哪些词汇描述准确,哪些词汇可以更好地表达,从而提高你的表达能力和连贯性。这比传统的自然语言处理模型在打分的准确度和表达丰富度上更上一层楼。

另一家初创公司LoraLura的AI产品,也是基于大模型驱动的功能,目前在StarLab公司备受关注。再看一个在线教育平台的开放式问题解答场景,用户可以求助于解决化学、物理等难题,系统不仅会给出答案,还会提供解题思路和建议。这是因为大模型在复杂的数学、化学任务上,能够达到人类平均水平之上的表现,相当于一个全才,在通用知识的处理能力上显著高于平均水平。

左侧这个智能检索的场景在教育领域也很常见,尤其在搜索专业领域的头部论文时。为什么在大语言模型时代下,这种交互式搜索如此突出?首先是因为大模型的处理能力非常强。以前的交互都是通过关键词搜索,得到海量链接和信息后,还需要人工一个个查找和总结。但在基础大模型时代,你可以用自然语言的方式与它交互,它能够理解你的语言,并且在搜取知识时,能够对回来的信息进行二次加工,生成摘要和总结,极大提高了检索和学习效率。同时,它还可以根据你的学习内容,推荐相关的资料,提高专业领域的交互体验。

现在有很多应用都是从移动端或网页端开始的,比如MidJourney、DALL-E等文生图应用,最初都是网页端,后来才发展到移动端。在这个办学平台的场景中,也有类似的体现形式。

再看一个作文辅助的场景,给定一个命题作文题目,系统就可以根据提示词生成一篇参考文章,内容包括写作要求、结构、修辞手法说明等,一方面可以激发写作创意,另一方面可以了解优秀作文的样例是什么样的,还可以进行定制化的点评,而不是简单地给出一个总结性评语。这种个性化的反馈,比传统评分更加专业和具体,对提高写作水平很有帮助,在AI助教和在线教育中可以发挥重要作用。

生成式AI技术的一个特点是知识的涌现能力。虽然语料库中可能没有针对中文或其他语种做特殊处理,但它依然能够对多种语言进行良好的交互,这与传统的机器翻译模型需要针对每种语种使用大量语料训练形成鲜明对比。

多模态教学场景在教育领域也很常见,不仅有文本,还有图片、视频、音频等多模态交互形式。大模型的能力不仅局限于语言领域,它可以在图像、视频、音频中发现知识,让人机交互更加丰富和贴近真实场景。这种个性化和口语化的交互体验,比以前的人机交互更加自然,用户不会觉得对方生硬或不理解自己。通过调优,大模型还可以成为特定领域的专家,回复语气和内容会与期望的角色相符。

我们展望一下未来的智能教室场景,通过实时收集学生的反馈,系统可以总结出课件,并为教学计划提出建议,还可以分析学生作业,安排合理的练习。虽然这只是一个畅想,但已经有客户在真正地使用大模型进行这种实践。

多模态课堂问答是另一个实际应用场景。学生做作业时可能是手写的,老师的课堂教学也是连续的视频。在这种情况下,需要语音提取技术把视频语音转为文本,然后由大模型对文本进行摘要总结,生成课堂反馈提纲和建议,同时还能识别手写公式等图像信息,实现多模态的综合处理。虽然大模型非常强大,但在端侧的成本和能力也需要考虑,云端可能会提供更好的多模态处理能力。

介绍一下亚马逊云科技在深圳的技术栈,我来自产品团队,我们的产品从底到上分为三个层次,覆盖了大模型利用的不同场景。最底层面向有技术储备的客户,可以使用我们提供的GPU选型、自研芯片能力,以及SageMaker的PaaS平台,在云上完成从模型构建、开发、训练到推理的全流程,解放繁重的工程工作,专注于算法效果和模型迭代。

中间这一层是一年前发布的平台Amazon Bedrock,提供强大的底层大模型基座能力,让客户更专注于业务场景和解决方案。最上层是一些SaaS服务,比如面向开发者的AmazonCodeWhisperer,能够辅助云上产品的代码开发;AmazonQuickSight则面向智能报表和BI场景,通过人类交互方式快速生成报表;AmazonConnect则是应用于智能客服场景。

这三层产品设计理念是,根据客户的资金实力、技术储备、数据安全要求,选择最佳的产品形态,无论是自主搭建基础设施、使用PaaS平台、还是直接采用SaaS解决方案,亚马逊都有相应的支持。

现在看一下亚马逊在海外上线的大模型接入情况。最新的是AnthropicAI公司的Claude模型,包括8B和70B参数的版本,代表了开源界最高水平。AnthropicAI公司的Claude模型也是业界最高水准的大模型。亚马逊自研了图像生成等领域的泰坦模型,保证了IP资产安全。CoherenceAI公司除了自有大模型,还拥有被认为是最好的嵌入模型之一,可用于文本向量化。

您在创建智能体时,不需要从头到尾开发整个架构,亚马逊的Agent功能已经将任务的编排拆解、调度工具、流程化等工作集成好了,降低了开发门槛,让您更关注业务场景。

我们看一下大模型在不同任务上的能力水平。在物理、化学、数学领域的逻辑推理和问题解决能力,以及多语种处理能力,都已经达到了业界最高水平,这就是所谓的”通用人工智能”的曙光。

以评分为例,我们看一下大模型在雅思作文点评方面的表现。左侧是Claude模型的输出,右侧是其他模型。大模型不仅能给出总体分数,还能针对你的文章内容,提出具体的改进建议,比如词汇的准确性、上下文的连贯性等,并给出相应的例子和解释,这比简单的评分反馈更加专业和具体。

在代码生成方面,大模型也表现出接近人类的自然交互方式,能更友好地一步步指导编程,对代码进行索引和纠正,处理能力和复杂度都更上一层楼。

如果将来使用亚马逊云科技的Bedrock大模型服务,界面会提供一个playground,你可以快速尝试,通过自然语言的方式与模型进行多轮对话交互,非常友好。未来与机器交互的方式可能就不需要写代码了,重要的是掌握好语言表达能力。

总的来说,虽然生成式AI技术给教育行业带来了诸多创新应用场景,但在具体任务上,还是需要针对场景选择合适的模型。比如在视觉类应用中,不同语种的手写体识别能力可能有所差异等。

最后分享两个客户案例。知名教育机构学而思与亚马逊云科技合作,利用SageMaker平台,快速验证模型并将其应用于IWrite、ITest、ITranslate等教学系统,解决了工程化问题,提高了学生的学习体验,减轻了老师的工作压力,促进了人才储备,而亚马逊负责提供底层基座能力。另一个案例是利用StableDiffusion开源模型,通过工具化的方式降低门槛,帮助客户快速打磨和优化课件生成效果。

通过本次分享,我们可以看到,生成式AI技术为教育行业带来了内容生成、个性化体验、参与度提升等诸多创新应用场景,提高了教学效率和质量。作为技术厂商,亚马逊云科技通过提供从基础设施到PaaS再到SaaS的全栈解决方案,集成多家顶尖模型,并给予工程化支持,帮助教育机构更好地利用这一前沿技术,推动教育行业变革。未来,亚马逊云科技将与更多教育合作伙伴一起,在生成式AI赋能教育的道路上持续创新和实践。

总结

生成式人工智能(AI)在教育行业中的应用前景广阔。大模型的强大能力可以为教育行业带来诸多创新,包括:

  1. AI助教可以通过语音识别、自然语言处理等技术,为学生提供个性化的发音评分和反馈,提高学习效率。
  2. 在开放式问题解答中,大模型可以基于通用知识,为学生提供解题思路和建议,而非仅仅搜索答案。
  3. 多模态交互(语音、图像、视频)可以让人机交互更加自然和个性化,提升学习体验。
  4. 在作文辅助、课件生成等场景中,大模型可以根据提示词生成相关内容,激发创意并提供个性化反馈。
  5. 多语种支持有助于教育产品的国际化推广。总之,生成式AI有望在教育领域发挥重要作用,提高教学质量和学习效率。

亚马逊云科技的Amazon Bedrock平台集成了多款领先的大模型,并提供了从基础设施到SaaS的全栈解决方案,可满足企业在大模型应用中的不同需求。亚马逊云科技将与合作伙伴携手,利用云上工具解决最后一公里的工程化问题,助力教育行业的数字化转型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值