【机器学习】全系列合集,戳这里!(更新中)

创建时间:2024-01-30
最后编辑时间:2025-01-24
作者:Geeker_LStar

这一篇是本系列所有文章的合集!持续更新中!

你好呀~这里是 Geeker_LStar 的人工智能学习专栏,很高兴遇见你~
我是 Geeker_LStar,一名高一学生,热爱计算机和数学,我们一起加油~! ⭐(●’◡’●) ⭐ 那就让我们开始吧!

一、合集(倒序)

31. 理解条件随机场最清晰的思路!(下篇)
30. 理解条件随机场最清晰的思路!(上篇)
29. 马尔可夫随机场 2w 字详解!超!系!统!
28. 集成学习之 Bagging & 随机森林!
27. 贝叶斯网络详解!超!系!统!
26. 梯度提升树 GBDT 超详细讲解!
25. AdaBoost 算法详解+推导来啦!
24. 从偏差—方差分解到集成学习!包全的!
23. 最大熵模型详解+推导来啦!解决 why sigmoid!
22. 信息论基础:信息熵、交叉熵、相对熵
21. 隐马尔可夫模型好难?看过来!(下篇)
20. 隐马尔可夫模型好难?看过来!(上篇)
19. 各种经典聚类算法,一篇带你过完!(上)
18. 讲人话的主成分分析,它来了!(下篇)
17. 讲人话的主成分分析,它来了!(上篇)
16. 线代小白也能看懂的矩阵奇异值分解!
15. EM 算法一万字详解!一起来学!
14. 手撕公式,一篇带你理解逻辑回归!
13. 决策树算法一万字详解!一篇带你看懂!
12. 似然函数和极大似然估计:原理、应用与代码实现
11. 回归算法中常用的模型评价指标有哪些?here!
10. 新手向,线性回归算法原理一篇吃透!
9. 我是怎么用朴素贝叶斯实现垃圾邮件分类的?真的超全!
8. KNN 算法原理 & 实践一篇讲清!
7. 交叉验证是什么?有哪些?怎么实现?来看!
6. 分类算法中常用的模型评价指标有哪些?here!
5. 从概率到朴素贝叶斯算法,一篇带你看明白!
4. 支持向量机算法怎么用?一个实例带你看懂!
3. 支持向量机(SVM)一万字详解!超全超详细超易懂!

二、分类

基础知识

信息论:
22. 信息论基础:信息熵、交叉熵、相对熵

模型评价:
6. 分类算法中常用的模型评价指标有哪些?here!
11. 回归算法中常用的模型评价指标有哪些?here!

交叉验证:
7. 交叉验证是什么?有哪些?怎么实现?来看!

似然:
12. 似然函数和极大似然估计:原理、应用与代码实现

偏差—方差分解:
24. 从偏差—方差分解到集成学习!包全的!

算法

集成学习
25. AdaBoost 算法详解+推导来啦!
26. 梯度提升树 GBDT 超详细讲解!
28. 集成学习之 Bagging & 随机森林!

概率图模型(PGM)
27. 贝叶斯网络详解!超!系!统!
29. 马尔可夫随机场 2w 字详解!超!系!统!

隐马尔可夫模型(HMM)
20. 隐马尔可夫模型好难?看过来!(上篇)
21. 隐马尔可夫模型好难?看过来!(下篇)

条件随机场(CRF)
30. 理解条件随机场最清晰的思路!(上篇)
31. 理解条件随机场最清晰的思路!(下篇)

主成分分析(PCA)
16. 线代小白也能看懂的矩阵奇异值分解!
17. 讲人话的主成分分析,它来了!(上篇)
18. 讲人话的主成分分析,它来了!(下篇)

支持向量机(SVM)
3. 支持向量机(SVM)一万字详解!超全超详细超易懂!
4. 支持向量机算法怎么用?一个实例带你看懂!

逻辑回归 & 最大熵
23. 最大熵模型详解+推导来啦!解决 why sigmoid!
14. 手撕公式,一篇带你理解逻辑回归!

决策树
13. 决策树算法一万字详解!一篇带你看懂!

朴素贝叶斯
5. 从概率到朴素贝叶斯算法,一篇带你看明白!
9. 我是怎么用朴素贝叶斯实现垃圾邮件分类的?真的超全!

K 近邻(KNN)
8. KNN 算法原理 & 实践一篇讲清!

线性回归:
10. 新手向,线性回归算法原理一篇吃透!

EM 算法:
15. EM 算法一万字详解!一起来学!

聚类:
19. 各种经典聚类算法,一篇带你过完!(上)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值