LeetCode1039. Minimum Score Triangulation of Polygon——区间dp

文章讨论了一个问题,给定一个每个顶点带有整数值的凸n边形,目标是找到一种将它划分为n-2个三角形的方法,使得所有三角形价值之和(即各顶点值的乘积)最小。使用动态规划求解,给出了一段C++代码实现。
摘要由CSDN通过智能技术生成

一、题目

You have a convex n-sided polygon where each vertex has an integer value. You are given an integer array values where values[i] is the value of the ith vertex (i.e., clockwise order).

You will triangulate the polygon into n - 2 triangles. For each triangle, the value of that triangle is the product of the values of its vertices, and the total score of the triangulation is the sum of these values over all n - 2 triangles in the triangulation.

Return the smallest possible total score that you can achieve with some triangulation of the polygon.

Example 1:

Input: values = [1,2,3]
Output: 6
Explanation: The polygon is already triangulated, and the score of the only triangle is 6.
Example 2:

Input: values = [3,7,4,5]
Output: 144
Explanation: There are two triangulations, with possible scores: 375 + 457 = 245, or 345 + 347 = 144.
The minimum score is 144.
Example 3:

Input: values = [1,3,1,4,1,5]
Output: 13
Explanation: The minimum score triangulation has score 113 + 114 + 115 + 111 = 13.

Constraints:

n == values.length
3 <= n <= 50
1 <= values[i] <= 100

二、题解

class Solution {
public:
    int minScoreTriangulation(vector<int>& values) {
        int n = values.size();
        vector<vector<int>> dp(n,vector<int>(n,0));
        for(int l = n - 3;l >= 0;l--){
            for(int r = l + 2;r < n;r++){
                dp[l][r] = INT_MAX;
                for(int m = l + 1;m < r;m++){
                    dp[l][r] = min(dp[l][r],dp[l][m] + dp[m][r] + values[l] * values[m] * values[r]);
                }
            }
        }
        return dp[0][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值