一、题目
You have a convex n-sided polygon where each vertex has an integer value. You are given an integer array values where values[i] is the value of the ith vertex (i.e., clockwise order).
You will triangulate the polygon into n - 2 triangles. For each triangle, the value of that triangle is the product of the values of its vertices, and the total score of the triangulation is the sum of these values over all n - 2 triangles in the triangulation.
Return the smallest possible total score that you can achieve with some triangulation of the polygon.
Example 1:
Input: values = [1,2,3]
Output: 6
Explanation: The polygon is already triangulated, and the score of the only triangle is 6.
Example 2:
Input: values = [3,7,4,5]
Output: 144
Explanation: There are two triangulations, with possible scores: 375 + 457 = 245, or 345 + 347 = 144.
The minimum score is 144.
Example 3:
Input: values = [1,3,1,4,1,5]
Output: 13
Explanation: The minimum score triangulation has score 113 + 114 + 115 + 111 = 13.
Constraints:
n == values.length
3 <= n <= 50
1 <= values[i] <= 100
二、题解
class Solution {
public:
int minScoreTriangulation(vector<int>& values) {
int n = values.size();
vector<vector<int>> dp(n,vector<int>(n,0));
for(int l = n - 3;l >= 0;l--){
for(int r = l + 2;r < n;r++){
dp[l][r] = INT_MAX;
for(int m = l + 1;m < r;m++){
dp[l][r] = min(dp[l][r],dp[l][m] + dp[m][r] + values[l] * values[m] * values[r]);
}
}
}
return dp[0][n-1];
}
};
文章讨论了一个问题,给定一个每个顶点带有整数值的凸n边形,目标是找到一种将它划分为n-2个三角形的方法,使得所有三角形价值之和(即各顶点值的乘积)最小。使用动态规划求解,给出了一段C++代码实现。
1090

被折叠的 条评论
为什么被折叠?



