pandas_7 文本数据

import numpy as np
import pandas as pd

一、str对象

1. pandas中str对象 VS python 中str模块

str对象是定义在IndexSeries上的属性,专门用于处理每个元素的文本内容,其内部定义了大量方法,因此对一个序列进行文本处理,首先需要获取其str对象。
在Python标准库中也有str模块,为了使用上的便利,有许多函数的用法pandas照搬了它的设计,例如字母转为大写的操作:

var = 'abcd'
str.upper(var) # Python内置str模块
#  'ABCD'

s = pd.Series(['abcd', 'efg', 'hi'])
s.str
# <pandas.core.strings.accessor.StringMethods at 0x1488ea6db08>
s.str.upper() # pandas中str对象上的upper方法
#    0    ABCD
#    1     EFG
#    2      HI
#    dtype: object

根据文档API材料,在pandas的50个str对象方法中,有31个是和标准库中的str模块方法同名且功能一致。

2. [ ]索引器

对于str对象而言,可理解为其对字符串进行了序列化的操作。
例如,在一般的字符串中:

var = 'abcd'
#通过[]取出某个位置的元素
var[0]
#  'a'
# 通过切片得到子串:
var[-1: 0: -2]
# 'db'

通过对str对象使用[]索引器,可以完成完全一致的功能,如果超出范围则返回缺失值

s = pd.Series(['abcd', 'efg', 'hi'])
s.str[0]
#    0    a
#    1    e
#    2    h
#    dtype: object

s.str[-1: 0: -2]
# 0    db
# 1     g
# 2     i
# dtype: object
s.str[2]
#    0      c
#    1      g
#    2    NaN
#    dtype: object

3. string类型

总体上说,绝大多数对于objectstring类型的序列使用str对象方法产生的结果是一致的,但是在下面提到的两点上有较大差异:

  1. 首先,应当尽量保证每一个序列中的值都是字符串的情况下才使用str属性,但这并不是必须的,其必要条件是序列中至少有一个可迭代(Iterable)对象,包括但不限于字符串、字典、列表。对于一个可迭代对象,string类型的str对象和object类型的str对象返回结果可能是不同的
s = pd.Series([{1: 'temp_1', 2: 'temp_2'}, ['a', 'b'], 0.5, 'my_string'])
# 0    {1: 'temp_1', 2: 'temp_2'}
# 1                        [a, b]
# 2                           0.5
# 3                     my_string
# dtype: object

s.str[1]
# 0    temp_1
# 1         b
# 2       NaN
# 3         y
# dtype: object

s.astype('string').str[1]
# 0    1
# 1    '
# 2    .
# 3    y
# dtype: string

除了最后一个字符串元素,前三个元素返回的值都不同,其原因在于:
当序列类型为object时,是对于每一个元素进行[]索引,因此对于字典而言,返回temp_1字符串,对于列表则返回第二个值,而第三个为不可迭代对象,返回缺失值,第四个是对字符串进行[]索引。
string类型的str对象先把整个元素转为字面意义的字符串,例如对于列表而言,第一个元素即 “{”,而对于最后一个字符串元素而言,恰好转化前后的表示方法一致,因此结果和object类型一致。

  1. 其次,string类型是Nullable类型,但object不是。这意味着string类型的序列,如果调用的str方法返回值为整数Series和布尔Series时,其分别对应的dtypeIntbooleanNullable类型;而object类型则会分别返回int/floatbool/object,取决于缺失值的存在与否。同时,字符串的比较操作,也具有相似的特性,string返回Nullable类型,但object不会。
s = pd.Series(['a'])
s.str.len()
#    0    1
#    dtype: int64
s.astype('string').str.len()
#    0    1
#    dtype: Int64

s == 'a'
#    0    True
#    dtype: bool
s.astype('string') == 'a'
#    0    True
#    dtype: boolean

s = pd.Series(['a', np.nan]) # 带有缺失值
s.str.len()
#    0    1.0
#    1    NaN
#    dtype: float64
s.astype('string').str.len()
#    0       1
#    1    <NA>
#    dtype: Int64

s == 'a'
#    0     True
#    1    False
#    dtype: bool
s.astype('string') == 'a'
#    0    True
#    1    <NA>
#    dtype: boolean

注意:对于全体元素为数值类型的序列,即使其类型为object或者category也不允许直接使用str属性。如果需要把数字当成string类型处理,可以使用astype强制转换为string类型的Series

s = pd.Series([12, 345, 6789])
s.astype('string').str[1]
#    0    2
#    1    4
#    2    7
#    dtype: string

二、正则表达式基础

这一节的两个表格来自于learn-regex-zh这个关于正则表达式项目,其使用MIT开源许可协议。这里只是介绍正则表达式的基本用法,需要系统学习的读者可参考正则表达式必知必会一书。

1. 一般字符的匹配_re.findall()

正则表达式是一种按照某种正则模式,从左到右匹配字符串中内容的一种工具。对于一般的字符而言,它可以找到其所在的位置,这里为了演示便利,使用了pythonre模块的findall函数来匹配所有出现过但不重叠的模式,第一个参数是正则表达式,第二个参数是待匹配的字符串。例如,在下面的字符串中找出apple

import re
re.findall(r'Apple', 'Apple! This Is an Apple!')
# ['Apple', 'Apple']

2. 元字符基础

元字符描述
.匹配除换行符以外的任意字符
[ ]字符类,匹配方括号中包含的任意字符
[^ ]否定字符类,匹配方括号中不包含的任意字符
*匹配前面的子表达式零次或多次
+匹配前面的子表达式一次或多次
?匹配前面的子表达式零次或一次
{n,m}花括号,匹配前面字符至少 n 次,但是不超过 m 次
(xyz)字符组,按照确切的顺序匹配字符xyz
|分支结构,匹配符号之前的字符或后面的字符
\转义符,它可以还原元字符原来的含义
^匹配行的开始
$匹配行的结束
import re
re.findall(r'.', 'abc')
# ['a', 'b', 'c']

re.findall(r'[ac]', 'abc')
#  ['a', 'c']

re.findall(r'[^ac]', 'abc')
# ['b']

re.findall(r'[ab]{2}', 'aaaabbbb') # {n}指匹配n次
# ['aa', 'aa', 'bb', 'bb']

re.findall(r'aaa|bbb', 'aaaabbbb')
# ['aaa', 'bbb']

re.findall(r'a\\?|a\*', 'aa?a*a')
# ['a', 'a', 'a', 'a']

re.findall(r'a?.', 'abaacadaae')
#  ['ab', 'aa', 'c', 'ad', 'aa', 'e']

3. 简写字符集

此外,正则表达式中还有一类简写字符集,其等价于一组字符的集合:

简写描述
\w匹配所有字母、数字、下划线: [a-zA-Z0-9_]
\W匹配非字母和数字的字符: [^\w]
\d匹配数字: [0-9]
\D匹配非数字: [^\d]
\s匹配空格符: [\t\n\f\r\p{Z}]
\S匹配非空格符: [^\s]
\B匹配一组非空字符开头或结尾的位置,不代表具体字符
import re
re.findall(r'.s', 'Apple! This Is an Apple!')
#  ['is', 'Is']

re.findall(r'\w{2}', '09 8? 7w c_ 9q p@')
# ['09', '7w', 'c_', '9q']

re.findall(r'\w\W\B', '09 8? 7w c_ 9q p@')
# ['8?', 'p@']

re.findall(r'.\s.', 'Constant dropping wears the stone.')
# ['t d', 'g w', 's t', 'e s']

re.findall(r'上海市(.{2,3}区)(.{2,3}路)(\d+号)', '上海市黄浦区方浜中路249号 上海市宝山区密山路5号')
#  [('黄浦区', '方浜中路', '249号'), ('宝山区', '密山路', '5号')]

三、文本处理的五类操作

1. 拆分_str.split / str.rsplit

str.split能够把字符串的列进行拆分,其中第一个参数为正则表达式,可选参数包括从左到右的最大拆分次数n,是否展开为多个列expand

s = pd.Series(['上海市黄浦区方浜中路249号', '上海市宝山区密山路5号'])
s.str.split('[市区路]')
#    0    [上海, 黄浦, 方浜中, 249号]
#    1       [上海, 宝山, 密山, 5号]
#    dtype: object

s.str.split('[市区路]', n=2, expand=True)
012
0上海黄浦方浜中路249号
1上海宝山密山路5号

str.rsplit,区别在于使用n参数的时候是从右到左限制最大拆分次数。但是当前版本下rsplit因为bug而无法使用正则表达式进行分割:

s.str.rsplit('[市区路]', n=2, expand=True)
0
0上海市黄浦区方浜中路249号
1上海市宝山区密山路5号

2. 合并_str.join / str.cat

str.join表示用某个连接符把Series中的字符串列表连接起来,如果列表中出现了非字符串元素则返回缺失值:

s = pd.Series([['a','b'], [1, 'a'], [['a', 'b'], 'c']])
s.str.join('-')
#    0    a-b
#    1    NaN
#    2    NaN
#    dtype: object

str.cat用于合并两个序列,主要参数为连接符sep、连接形式join:默认为以索引为键的左连接、缺失值替代符号na_rep

s1 = pd.Series(['a','b'])
s2 = pd.Series(['cat','dog'])
s1.str.cat(s2,sep='-')
#    0    a-cat
#    1    b-dog
#    dtype: object

s2.index = [1, 2]
s1.str.cat(s2, sep='-', na_rep='?', join='outer')
#    0      a-?
#    1    b-cat
#    2    ?-dog
#    dtype: object

3. 匹配_str.contains/str.startswith/str.endswith/str.match/str.find/str.rfind

str.contains返回了每个字符串是否包含正则模式的布尔序列:

s = pd.Series(['my cat', 'he is fat', 'railway station'])
s.str.contains('\s\wat')
#    0     True
#    1     True
#    2    False
#    dtype: bool

str.startswithstr.endswith返回了每个字符串以给定模式为开始和结束的布尔序列,它们都不支持正则表达式:

s.str.startswith('my')
#    0     True
#    1    False
#    2    False
#    dtype: bool

s.str.endswith('t')
#    0     True
#    1     True
#    2    False
#    dtype: bool

如果需要用正则表达式来检测开始或结束字符串的模式,可以使用str.match,其返回了每个字符串起始处是否符合给定正则模式的布尔序列:

s.str.match('m|h')
#    0     True
#    1     True
#    2    False
#    dtype: bool

s.str[::-1].str.match('ta[f|g]|n') # 反转后匹配
#    0    False
#    1     True
#    2     True
#    dtype: bool

当然,这些也能通过在str.contains的正则中使用^$来实现:

s.str.contains('^[m|h]')
#    0     True
#    1     True
#    2    False
#    dtype: bool

s.str.contains('[f|g]at|n$')
#    0    False
#    1     True
#    2     True
#    dtype: bool

除了上述返回值为布尔的匹配之外,还有一种返回索引的匹配函数,即str.findstr.rfind,其分别返回从左到右和从右到左第一次匹配的位置的索引,未找到则返回-1。这两个函数不支持正则匹配,只能用于字符子串的匹配:

s = pd.Series(['This is an apple. That is not an apple.'])
s.str.find('apple')
#    0    11
#    dtype: int64

s.str.rfind('apple')
#    0    33
#    dtype: int64

4. 替换_str.replace

注意:str.replacereplace并不是一个函数,在使用字符串替换时应当使用前者。

s = pd.Series(['a_1_b','c_?'])
s.str.replace('\d|\?', 'new', regex=True)
#    0    a_new_b
#    1      c_new
#    dtype: object

当需要对不同部分进行有差别的替换时,可以利用子组的方法,并且此时可以通过传入自定义的替换函数来分别进行处理,注意group(k)代表匹配到的第k个子组(圆括号之间的内容):

s = pd.Series(['上海市黄浦区方浜中路249号',
                '上海市宝山区密山路5号',
                '北京市昌平区北农路2号'])
pat = '(\w+市)(\w+区)(\w+路)(\d+号)'
city = {'上海市': 'Shanghai', '北京市': 'Beijing'}
district = {'昌平区': 'CP District',
            '黄浦区': 'HP District',
            '宝山区': 'BS District'}
road = {'方浜中路': 'Mid Fangbin Road',
        '密山路': 'Mishan Road',
        '北农路': 'Beinong Road'}
def my_func(m):
    str_city = city[m.group(1)]
    str_district = district[m.group(2)]
    str_road = road[m.group(3)]
    str_no = 'No. ' + m.group(4)[:-1]
    return ' '.join([str_city,
                     str_district,
                     str_road,
                     str_no])
s.str.replace(pat, my_func, regex=True)
0    Shanghai HP District Mid Fangbin Road No. 249
1           Shanghai BS District Mishan Road No. 5
2           Beijing CP District Beinong Road No. 2
dtype: object

这里的数字标识并不直观,可以使用命名子组更加清晰地写出子组代表的含义:

pat = '(?P<市名>\w+市)(?P<区名>\w+区)(?P<路名>\w+路)(?P<编号>\d+号)'
def my_func(m):
    str_city = city[m.group('市名')]
    str_district = district[m.group('区名')]
    str_road = road[m.group('路名')]
    str_no = 'No. ' + m.group('编号')[:-1]
    return ' '.join([str_city,
                     str_district,
                     str_road,
                     str_no])
s.str.replace(pat, my_func, regex=True)
0    Shanghai HP District Mid Fangbin Road No. 249
1           Shanghai BS District Mishan Road No. 5
2           Beijing CP District Beinong Road No. 2
dtype: object

这里虽然看起来有些繁杂,但是实际数据处理中对应的替换,一般都会通过代码来获取数据从而构造字典映射,在具体写法上会简洁的多。

5. 提取——str.extract / str.extractall / str.findall

提取既可以认为是一种返回具体元素(而不是布尔值或元素对应的索引位置)的匹配操作,也可以认为是一种特殊的拆分操作。前面提到的str.split例子中会把分隔符去除,这并不是用户想要的效果,这时候就可以用str.extract进行提取:

pat = '(\w+市)(\w+区)(\w+路)(\d+号)'
s.str.extract(pat)
0123
0上海市黄浦区方浜中路249号
1上海市宝山区密山路5号
2北京市昌平区北农路2号

通过子组的命名,可以直接对新生成DataFrame的列命名:

pat = '(?P<市名>\w+市)(?P<区名>\w+区)(?P<路名>\w+路)(?P<编号>\d+号)'
s.str.extract(pat)
市名区名路名编号
0上海市黄浦区方浜中路249号
1上海市宝山区密山路5号
2北京市昌平区北农路2号

str.extractall不同于str.extract只匹配一次,它会把所有符合条件的模式全部匹配出来,如果存在多个结果,则以多级索引的方式存储:

s = pd.Series(['A135T15,A26S5','B674S2,B25T6'], index = ['my_A','my_B'])
pat = '[A|B](\d+)[T|S](\d+)'
s.str.extractall(pat)
01
match
my_A013515
1265
my_B06742
1256
pat_with_name = '[A|B](?P<name1>\d+)[T|S](?P<name2>\d+)'
s.str.extractall(pat_with_name)
name1name2
match
my_A013515
1265
my_B06742
1256

str.findall的功能类似于str.extractall,区别在于前者把结果存入列表中,而后者处理为多级索引,每个行只对应一组匹配,而不是把所有匹配组合构成列表。

s.str.findall(pat)
my_A    [(135, 15), (26, 5)]
my_B     [(674, 2), (25, 6)]
dtype: object

四、其他常用字符串函数

除了上述介绍的五类字符串操作有关的函数之外,str对象上还定义了一些实用的其他方法,在此进行介绍:

1. 字母型函数_upper, lower, title, capitalize, swapcase

upper, lower, title, capitalize, swapcase这五个函数主要用于字母的大小写转化,从下面的例子中就容易领会其功能:

s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'])
s.str.upper()
0                 LOWER
1              CAPITALS
2    THIS IS A SENTENCE
3              SWAPCASE
dtype: object
s.str.lower()
0                 lower
1              capitals
2    this is a sentence
3              swapcase
dtype: object
s.str.title()
0                 Lower
1              Capitals
2    This Is A Sentence
3              Swapcase
dtype: object
s.str.capitalize()
0                 Lower
1              Capitals
2    This is a sentence
3              Swapcase
dtype: object
s.str.swapcase()
0                 LOWER
1              capitals
2    THIS IS A SENTENCE
3              sWaPcAsE
dtype: object

2. 数值型函数_pd.to_numeric

pd.to_numeric方法: 它虽然不是str对象上的方法,但是能够对字符格式的数值进行快速转换和筛选。其主要参数包括errorsdowncast分别代表了非数值的处理模式和转换类型。其中,对于不能转换为数值的有三种errors选项,raise, coerce, ignore分别表示直接报错、设为缺失以及保持原来的字符串。

s = pd.Series(['1', '2.2', '2e', '??', '-2.1', '0'])
pd.to_numeric(s, errors='ignore')
0       1
1     2.2
2      2e
3      ??
4    -2.1
5       0
dtype: object
pd.to_numeric(s, errors='coerce')
0    1.0
1    2.2
2    NaN
3    NaN
4   -2.1
5    0.0
dtype: float64

在数据清洗时,可以利用coerce的设定,快速查看非数值型的行:

s[pd.to_numeric(s, errors='coerce').isna()]
2    2e
3    ??
dtype: object

3. 统计型函数_count / len

countlen的作用分别是返回出现正则模式的次数和字符串的长度:

s = pd.Series(['cat rat fat at', 'get feed sheet heat'])
s.str.count('[r|f]at|ee')
0    2
1    2
dtype: int64
s.str.len()
0    14
1    19
dtype: int64

4. 格式型函数

格式型函数主要分为两类:除空型、填充型。

除空型_strip, rstrip, lstrip

除空型函数一共有三种:strip, rstrip, lstrip,分别代表去除两侧空格、右侧空格和左侧空格。这些函数在数据清洗时是有用的,特别是列名含有非法空格的时候。

my_index = pd.Index([' col1', 'col2 ', ' col3 '])
my_index.str.strip().str.len()
#  Int64Index([4, 4, 4], dtype='int64')

my_index.str.rstrip().str.len()
# Int64Index([5, 4, 5], dtype='int64')

my_index.str.lstrip().str.len()
# Int64Index([4, 5, 5], dtype='int64')

填充型_ pad / rjust, ljust, center / zfill

对于填充型函数而言,pad是最灵活的,它可以选定字符串长度、填充的方向和填充内容:

s = pd.Series(['a','b','c'])
s.str.pad(5,'left','*')
0    ****a
1    ****b
2    ****c
dtype: object
s.str.pad(5,'right','*')
0    a****
1    b****
2    c****
dtype: object
s.str.pad(5,'both','*')
0    **a**
1    **b**
2    **c**
dtype: object

上述的三种情况可以分别用rjust, ljust, center来等效完成,需要注意ljust是指右侧填充而不是左侧填充:

s.str.rjust(5, '*')
0    ****a
1    ****b
2    ****c
dtype: object
s.str.ljust(5, '*')
0    a****
1    b****
2    c****
dtype: object
s.str.center(5, '*')
0    **a**
1    **b**
2    **c**
dtype: object

在读取excel文件时,经常会出现数字前补0的需求,例如证券代码读入的时候会把"000007"作为数值7来处理,pandas中除了可以使用上面的左侧填充函数进行操作之外,还可用zfill来实现。

s = pd.Series([7, 155, 303000]).astype('string')
s.str.pad(6,'left','0')
s.str.rjust(6,'0')
s.str.zfill(6)
0    000007
1    000155
2    303000
dtype: string
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值