C. Zero Path

题目:C. Zero Path

考点:DP

题意:在一个 n × m n \times m n×m 的矩阵中,找出一条从 ( 1 , 1 ) (1,1) (1,1) ( n , m ) (n,m) (n,m) 总和为 0 0 0 的路径,其中每次移动只能向下或向右,如果存在总和为 0 0 0 的路径,输出 Y E S YES YES ,否则输出 N O NO NO

官方题解:如果 n + m n+m n+m 为偶数,那么从左上角到右下角的如何路径都将为奇数,因此一定是非零的。这种情况是不存在和为零的路径。

对于网格中的每个位置 ( i , j ) (i,j) (i,j),我们定义 m a x i , j max_{i,j} maxi,j 为从左上角开始到 ( i , j ) (i,j) (i,j) 结束的路径的最大可能和。同样, m i n i , j min_{i,j} mini,j 被定义为从左上角开始到 ( i , j ) (i,j) (i,j) 结束的最小可能和。这些值可以用 D P DP DP 来计算,其中
m a x i , j = a i , j + m a x ( m a x ( i − 1 ) , j , m a x i , ( j − 1 ) ) m i n i , j = a i , j + m i n ( m i n ( i − 1 ) , j , m i n i , ( j − 1 ) ) max_{i,j}=a_{i,j}+max(max_{(i-1),j},max_{i,(j-1)})\\ min_{i,j}=a_{i,j}+min(min_{(i-1),j}, min_{i,(j-1)}) maxi,j=ai,j+max(max(i1),j,maxi,(j1))mini,j=ai,j+min(min(i1),j,mini,(j1))
如果 0 < m i n n , m 0<min_{n,m} 0<minn,m m a x n , m < 0 max_{n,m}<0 maxn,m<0 ,则没有路径加起来为 0 0 0。否则, 0 0 0 位于 [ m i n n , m , m a x n , m ] [min_{n,m},max_{n,m}] [minn,m,maxn,m] 范围内,我们可以证明有一个有效的解决路径。

证明。设 p 1 p_1 p1 是一条从 ( 1 , 1 ) (1,1) (1,1) ( n , m ) (n,m) (n,m) 的路径,加起来为 m i n n , m min_{n,m} minn,m p 2 p_2 p2 是另一条这样的路径,加起来为 m a x n , m max_{n,m} maxn,m。这些路径中的每一条都由 n − 1 n-1 n1 个下移和 m − 1 m-1 m1 个右移组成,所以它可以表示为长度为 n + m − 2 n+m-2 n+m2 的 " R R R "和 " D D D "的字符串。我们可以通过一连串的操作将 p 1 p_1 p1 移动到 p 2 p_2 p2,其中交换两个相邻(且不同)的字符。从视觉上看,我们所做的是将路径上的一个方块替换成斜向相邻的一个方块。下图显示了路径上的一个可能的操作。

img

请注意,在每一步中,路径上的数值之和都会发生变化,是 − 2 , 0 , 2 -2,0,2 2,0,2 。因此,在进行了这一连串的操作后,从 p 1 p_1 p1 p 2 p_2 p2,我们已经将总和为 m i n n , m min_{n,m} minn,m 的路径移到了总和为 m a x n , m max_{n,m} maxn,m 的路径上,每一步的总和都改变了 − 2 , 0 , 2 -2,0,2 2,0,2 。因此,由于 m i n n , m min_{n,m} minn,m m a x n , m max_{n,m} maxn,m 都是偶数,而且 m i n n , m ≤ 0 ≤ m a x n , m min_{n,m}≤0≤max_{n,m} minn,m0maxn,m,在这一操作序列的某个点上,路径的和一定是零。

#include<stdio.h>
#include<algorithm>

using namespace std;
const int N = 1e3 + 10,INF = 0x3f3f3f3f;
int a[N][N];
int maxv[N][N],minv[N][N];

int main(){
	int t;
	scanf("%d",&t);
	while(t --) {
		int n,m;
		scanf("%d %d",&n,&m);
		for(int i=1;i<=n;i++) {
			for(int j=1;j<=m;j++) {
				scanf("%d",&a[i][j]);
				maxv[i][j] = -INF;
				minv[i][j] = INF;
			}
		}
		maxv[1][1] = minv[1][1] = a[1][1];
		for(int i=1;i<=n;i++) {
			for(int j=1;j<=m;j++) {
				if(i != 1) maxv[i][j] = max(maxv[i][j],a[i][j]+maxv[i-1][j]);
				if(j != 1) maxv[i][j] = max(maxv[i][j],a[i][j]+maxv[i][j-1]);
				
				if(i != 1) minv[i][j] = min(minv[i][j],a[i][j]+minv[i-1][j]);
				if(j != 1) minv[i][j] = min(minv[i][j],a[i][j]+minv[i][j-1]);
				
			}
		}
		
		
		if((n - 1 + m) % 2 == 1) printf("NO\n");
		else {
			if(maxv[n][m] >=0 && minv[n][m] <=0) printf("YES\n");
			else printf("NO\n");
		}
	}
	return 0;
}
/*
1
3 4
-1 -1 1 1
-1 -1 -1 -1
-1 -1 -1 -1
*/
这段代码在运行时import SimpleITK as sitkimport numpy as npimport os# 设置文件路径data_path = 'C:/Users/Administrator/Desktop/LiTS2017/'save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017/'if not os.path.exists(save_path): os.makedirs(save_path)# 定义函数将3D图像保存为2D的.png格式def save_image_as_png(image, save_folder, name_prefix): for i in range(image.shape[2]): slice = np.squeeze(image[:, :, i]) slice = slice.astype(np.float32) slice *= 255.0/slice.max() slice = slice.astype(np.uint8) save_name = os.path.join(save_folder, name_prefix + '_' + str(i) + '.png') sitk.WriteImage(sitk.GetImageFromArray(slice), save_name)# 读取Training Batch 1中的图像image_path = os.path.join(data_path, 'Training Batch 1/volume-0.nii')image = sitk.ReadImage(image_path)image_array = sitk.GetArrayFromImage(image)save_folder = os.path.join(save_path, 'image')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(image_array, save_folder, 'img')# 读取Training Batch 2中的标签label_path = os.path.join(data_path, 'Training Batch 2/segmentation-0.nii')label = sitk.ReadImage(label_path)label_array = sitk.GetArrayFromImage(label)# 将标签转换为灰度图并保存label_array[label_array == 1] = 128label_array[label_array == 2] = 255save_folder = os.path.join(save_path, 'mask')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(label_array, save_folder, 'mask')会出现RuntimeWarning: divide by zero encountered in true_divide slice *= 255.0/slice.max()这种情况,修复它,并给出完整代码
05-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值