为什么泊松回归在变量高相关情况下表现不佳

本文讨论了线性回归模型中多重共线性问题的原理,指出其可能导致参数估计困难。同时,文章探讨了在泊松回归中,当自变量相关性增强时,最大似然估计的不稳定性和高方差。通过特征值和权重矩阵来揭示了这些问题的影响机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、多重共线性

  在此之前我们先解释变量高相关的本质。

  多重共线性问题描述的是在线性回归模型中解释变量(X)之间具有高度相关性的现象。当自变量之间存在这种高相关时,会导致模型的参数估计精度降低或难以准确估计。
  我们称完全多重共线性情况是指矩阵 X T X {X^T}X XTX严格不可逆的情况。

在LRM(线性回归模型)中:
  构建一个线性回归模型
Y = X β + ε Y = X\beta + \varepsilon Y=+ε其中 Y Y Y n × 1 n \times 1 n×1的矩阵, X X X n × p n \times p n×p的矩阵, ε \varepsilon ε为误差向量。通过LS(最小二乘估计)可以得到参数估计为
β ^ = ( X T X ) − 1 X T Y \hat \beta = {({X^T}X)^{ - 1}}{X^T}Y β^=(XTX)1XTY从参数估计的表达式中不难发现,当 X T X {X^T}X XTX的逆不存在的情况下,参数估计值可能不存在。

接着我们分析在 X X X具有满秩,而 X T X {X^T}X XTX可逆
估计参数的协方差矩阵为:
C o v ( β ^ ) = σ 2 ( X T X ) − 1 Cov(\hat \beta ) = {\sigma ^2}{({X^T}X)^{ - 1}} Cov(β^)=σ2(XTX)1其中 σ 2 \sigma ^2 σ2为误差方差,上式可以改写为:
C o v ( β ^ ) = σ 2 ∑ k = 1 K p k ( 1 / λ k ) p k T Cov(\hat \beta ) = {\sigma ^2}\sum\limits_{k = 1}^K {{p_k}(1/{\lambda _k})} p_k^T Cov(β^)=σ2k=1Kpk(1/λk)pkT p p p X T X {X^T}X XTX的特征向量, λ \lambda λ X T X {X^T}X XTX的特征值。当 X T X {X^T}X XTX的特征值很小时,回归系数的方差不可避免的增大。

参考文献:Tormod(2001)Understanding the collinearity problem in regression and discriminant analysis

2、多重共线性下的泊松回归

  在泊松回归下,响应变量 Y Y Y应服从泊松分布 P 0 ( μ i ) {P_0}({\mu _i}) P0(μi),其中 μ i = e x p ( x i β ) \mu _i=exp(x_i\beta) μi=exp(xiβ)为泊松分布的均值, x i x_i xi n × p n \times p n×p的数据矩阵 X X X的第 i i i行, β \beta β p × 1 p\times 1 p×1的回归系数。

  求解泊松回归模型的参数最常用的方法是最大似然估计法(ML)

首先构建似然函数: l ( μ ; y ) = ∑ i = 1 n y i log ⁡ ( μ i ) − ∑ i = 1 n μ i − log ⁡ ( ∏ i = 1 n y i ! ) = ∑ i = 1 n y i log ⁡ ( exp ⁡ ( x i β ) ) − ∑ i = 1 n exp ⁡ ( x i β ) − log ⁡ ( ∏ i = 1 n y i ! ) \begin{aligned} l(\boldsymbol{\mu} ; \mathbf{y}) & =\sum_{i=1}^n y_i \log \left(\mu_i\right)-\sum_{i=1}^n \mu_i-\log \left(\prod_{i=1}^n y_{i}!\right) \\ & =\sum_{i=1}^n y_i \log \left(\exp \left(\mathbf{x}_i \boldsymbol{\beta}\right)\right)-\sum_{i=1}^n \exp \left(\mathbf{x}_{\mathbf{i}} \boldsymbol{\beta}\right)-\log \left(\prod_{i=1}^n y_{i}!\right) \end{aligned} l(μ;y)=i=1nyilog(μi)i=1nμilog(i=1nyi!)=i=1nyilog(exp(xiβ))i=1nexp(xiβ)log(i=1nyi!)通过以下的等式求解参数估计值:
S ( β ) = ∂ l ( μ ; y ) ∂ β = ∑ i = 1 n ( y i − exp ⁡ ( x i β ) ) x i = 0 S(\beta ) = \frac{{\partial l(\mu ;y)}}{{\partial \beta }} = \sum\limits_{i = 1}^n {({y_i} - \exp ({x_i}\beta ))} {x_i} = 0 S(β)=βl(μ;y)=i=1n(yiexp(xiβ))xi=0由于求解上式是一个非线性问题,通过迭代加权最小二乘算法( iterative weighted least square (IWLS))求解得到:
β ^ M L = ( X T W ^ X ) − 1 X T W ^ z ^ {{\hat \beta }_{ML}} = {({X^T}\hat WX)^{ - 1}}{X^T}\hat W\hat z β^ML=(XTW^X)1XTW^z^其中 W ^ = d i a g [ μ ^ i ] \hat W=diag[\hat \mu _i] W^=diag[μ^i] z ^ \hat z z^是等式 z ^ i = log ⁡ ( μ ^ i ) + y i − μ ^ i μ ^ i {{\hat z}_i} = \log ({{\hat \mu }_i}) + \frac{{{y_i} - {{\hat \mu }_i}}}{{{{\hat \mu }_i}}} z^i=log(μ^i)+μ^iyiμ^i构成的向量的第i个元素。ML 估计量是渐近正态分布的,协方差矩阵对应于二阶导数矩阵的倒数:
Cov ⁡ ( β ^ M L ) = [ − E ( ∂ 2 I ∂ β j ∂ β k ′ ) ] − 1 = ( X ′ W ^ X ) − 1 \operatorname{Cov}\left(\hat{\boldsymbol{\beta}}_{\mathbf{M L}}\right)=\left[-E\left(\frac{\partial^2 I}{\partial \beta_j \partial \beta_k^{\prime}}\right)\right]^{-1}=\left(\mathbf{X}^{\prime} \hat{\mathbf{W}} \mathbf{X}\right)^{-1} Cov(β^ML)=[E(βjβk2I)]1=(XW^X)1此外,估计的MSE为:
E ( L M L 2 ) = E ( β ^ M L − β ) ′ ( β ^ M L − β ) = tr ⁡ [ ( X ′ W ^ X ) − 1 ] = ∑ j = 1 J 1 λ j , E\left(L_{M L}^2\right)=E\left(\hat{\boldsymbol{\beta}}_{\mathbf{M L}}-\boldsymbol{\beta}\right)^{\prime}\left(\hat{\boldsymbol{\beta}}_{\mathbf{M L}}-\boldsymbol{\beta}\right)=\operatorname{tr}\left[\left(\mathbf{X}^{\prime} \hat{\mathbf{W}} \mathbf{X}\right)^{-1}\right]=\sum_{j=1}^J \frac{1}{\lambda_j}, E(LML2)=E(β^MLβ)(β^MLβ)=tr[(XW^X)1]=j=1Jλj1,其中, λ j \lambda_j λj X T W ^ X {X^T}\hat WX XTW^X矩阵的第j个特征值, ( L M L 2 ) \left(L_{M L}^2\right) (LML2)表示估计量的损失,当变量间具有高相关时, X T X X^TX XTX的特征值较小,导致 E ( L M L 2 ) E\left(L_{M L}^2\right) E(LML2)增大;通过 X T W ^ X {X^T}\hat WX XTW^X我们不难发现,在解释变量与叉乘的加权矩阵具有高相关时,将会导致ML估计量的不稳定性和高方差,在这种情况下,很难去解释待估参数。

参考文献:Månsson, K., & Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4), 1475–1481. doi:10.1016/j.econmod.2011.02.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值