基于中央处理器的DeepSeek容器镜像构建及实践应用——以KeyarchOS操作系统为例

在KeyarchOS(KOS)操作系统上使用容器技术部署Deepseek应用,能够有效实现环境隔离、快速部署和资源优化。本文详细讲解如何从零开始构建基于CPU的Deepseek容器镜像,并演示其使用方法。本方案适用于KOS 5.8及以上版本,兼容CentOS生态体系。

整体架构:

软硬件环境

本次使用的软硬件环境如下:

机型:NF5466G7

操作系统:Keyarchos5.8 SP2

内存:256G

磁盘空间:4T

Ollama: 0.5.7

1 镜像制作

本文的镜像制作是基于KOS最新版KOS5.8-SP2 U1的docker镜像进行的。

在基础docker镜像中进行大模型的配置,之后导出新的docker镜像文件,供后续使用。

Docker镜像下载链接http://kos.ieisystem.com/kos-isos/kos_docker/KeyarchOS-5.8-SP2-U1-x86_64-docker-20241211.tar

进行具体方法如下:

第一步:

加载KOS的容器镜像,

docker load -i KeyarchOS-5.8-SP2-U1-x86_64-docker-20241211.tar

第二步:

将宿主机的/mnt/aitest目录挂载到容器镜像中的/ollama下,挂载宿主机目录的命令参数:

-v 宿主机目录:目的目录

本文提供了自动部署脚本,创建docker镜像,需要使用DockerFile文件。

DockerFile文件如下:以7b模型为例:

# 使用本地镜像作为基础镜像

FROM keyarchos:5.8sp2u1

#当前目录下需要放置ollama-linux-amd64.tgz

COPY ollama-linux-amd64.tgz /ollama-linux-amd64.tgz

RUN dnf -y install tar

RUN cd / && tar xvf ollama-linux-amd64.tgz -C /root && cp -r /root/bin/* /bin && cp -r /root/lib/* /lib && rm -rf ollama-linux-amd64.tgz /root/*

# 设置环境变量

ENV OLLAMA_HOST=0.0.0.0:11434

# 映射容器内的端口到主机的端口(例如:容器内端口 14144 映射到主机端口 14144)

EXPOSE 11434

COPY start-7b.sh /start-7b.sh

RUN chmod +x /start-7b.sh

CMD ["/start-7b.sh"]

文档下载链接:

http://kos.ieisystem.com/kos-isos/kos_docker/docker_cpu/Dockerfile

第一步:制作镜像,根据dockerfile构建image,命令如下:

docker build -t deepseek-kos-7b .

第二步:导出构建的image,命令如下:

docker save -o deepseek-kos-7b01.tar deepseek-kos-7b:latest

第三步:加载docker镜像

docker load -i deepseek-kos-7b.tar

第四步:启动docker容器

查看容器镜像

docker run -d -p 11464:11434 --name ds-kos-7b deepseek-kos-7b:latest

注意:

-p 11434:11434是将容器中的11434端口开放。

ds-kos-7b:容器的名称,注意不可与已经使用的容器重名。

deepseek-kos-7b:latest:容器镜像的名称和标签,可通过docker images查询

docker run -d -p 11464:11434 --name ds-kos-7b0302 deepseek-kos-7b:latest

第五步:进入镜像执行一键执行start,命令如下:

docker exec -it c8aea91d41cab51ab32d04fb248a3cd0bfbb8caf8f00cb8aad54cb738ed1c612 bash

c8aea91d41cab51ab32d04fb248a3cd0bfbb8caf8f00cb8aad54cb738ed1c612 容器ID是可变的,与步骤四有关。

为了启动大模型,进入容器,执行命令 : sh /start_7b.sh

注:

start_7b.sh 文件下载链接:http://kos.ieisystem.com/kos-isos/kos_docker/start_cpu/start-7b.sh

如下图所示:

第六步:开放主机防火墙端口,执行如下命令:(不推荐直接关闭防火墙服务)

firewall-cmd --zone=public --add-port=11434/tcp --permanent && firewall-cmd --reload

2 镜像使用测试

制作完成镜像后可以通过docker服务进行加载启用,具体步骤如下:

第一步:KOS下在线安装docker。

第二步:将deepseek-kos-docker-xxb.tar拷贝到KOS系统下。

第三步:以deepseek-kos-docker-1.5b.tar为例加载镜像,如下图:

第四步:运行镜像,创建的镜像开启,需要开对外的端口。

如:

docker run -d -p 11434:11434 --name ds-kos-1.5b deepseek-kos-docker-1.5b:latest

第五步:放开防火墙端口。

firewall-cmd --zone=public --add-port=11888/tcp --permanent && firewall-cmd --reload

第六步:验证

安装chatbox,设置如下:

模型提供方选择PLLAMA API,API域名设置,模型可以自动选择出来。

使用示例:

3 常见问题

启动的时候名称不可重复,否则会报错

说明已经存在相同名称的镜像在运行。

解决方法:修改容器的名称后再启动。

  写在最后:更多AI学习资料请添加学习助手领取资料礼包

视频学习资料:

从0开始开发超级AI智能体,干掉所有重复工作

  • 基于字节的coze平台从0到1搭建我们自己的智能体
  • 从coze到超级创业个体:2025是AI Agent大爆炸的元年!
  • 搭建智能体的七大步骤:需求梳理、软件选型、提示工程、数据库、构建 UI 界面、测试评估、部署
  • 你的智能体如何并行调用多个通用AI大模型?
  • 实战案例:AI Agent提取小红书文案以及图像进行OCR文字识别并同步写入飞书多维表格
  • 实战案例:AI Agent提取抖音爆款短视频链接中的文案,基于大模型和提示词完成符合小红书风格和作者特点的文案仿写

DeepSeek AI Agent +自动化助力企业实现 AI 改造实战

  • DeepSeek 大模型的本地部署与客户端chatbox本地知识库
  • 程序员的跨时代产品,AI 代码编辑器cursor深入浅出与项目构建
  • 软件机器人工具影刀RPA工业化地基本使用
  • 影刀RPA WEB自动化采集Boss直聘岗位信息并存储
  • 影刀AI Power与DeepSeek 工作流构建影刀AI Agent
  • AI HR实战:结合影刀RPA+DeepSeek AI智能体,实现智能自动招聘机器人

大模型技术+ 数字人+混剪造就副业王炸组合

  • 数字人的概念与价值
  • 当前数字人的时代背景
  • 数字人的市场需求
  • 数字人与自媒体的关系和发展路径
  • 商业化数字人的变现之路
  • 基于coze搭建数字人超级智能体
  • 大模型技术+数字人+混剪=最强副业方向
  • AI大模型与数字人造就3分钟获客300条精准线索
  • AI副业接单渠道与流量变现
  • 程序员开发的AI数字人实战
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值