在KeyarchOS(KOS)操作系统上使用容器技术部署Deepseek应用,能够有效实现环境隔离、快速部署和资源优化。本文详细讲解如何从零开始构建基于CPU的Deepseek容器镜像,并演示其使用方法。本方案适用于KOS 5.8及以上版本,兼容CentOS生态体系。
整体架构:

软硬件环境
本次使用的软硬件环境如下:
机型:NF5466G7
操作系统:Keyarchos5.8 SP2
内存:256G
磁盘空间:4T
Ollama: 0.5.7
1 镜像制作
本文的镜像制作是基于KOS最新版KOS5.8-SP2 U1的docker镜像进行的。
在基础docker镜像中进行大模型的配置,之后导出新的docker镜像文件,供后续使用。
Docker镜像下载链接:http://kos.ieisystem.com/kos-isos/kos_docker/KeyarchOS-5.8-SP2-U1-x86_64-docker-20241211.tar
进行具体方法如下:
第一步:
加载KOS的容器镜像,
docker load -i KeyarchOS-5.8-SP2-U1-x86_64-docker-20241211.tar

第二步:
将宿主机的/mnt/aitest目录挂载到容器镜像中的/ollama下,挂载宿主机目录的命令参数:
-v 宿主机目录:目的目录
本文提供了自动部署脚本,创建docker镜像,需要使用DockerFile文件。
DockerFile文件如下:以7b模型为例:
# 使用本地镜像作为基础镜像
FROM keyarchos:5.8sp2u1
#当前目录下需要放置ollama-linux-amd64.tgz
COPY ollama-linux-amd64.tgz /ollama-linux-amd64.tgz
RUN dnf -y install tar
RUN cd / && tar xvf ollama-linux-amd64.tgz -C /root && cp -r /root/bin/* /bin && cp -r /root/lib/* /lib && rm -rf ollama-linux-amd64.tgz /root/*
# 设置环境变量
ENV OLLAMA_HOST=0.0.0.0:11434
# 映射容器内的端口到主机的端口(例如:容器内端口 14144 映射到主机端口 14144)
EXPOSE 11434
COPY start-7b.sh /start-7b.sh
RUN chmod +x /start-7b.sh
CMD ["/start-7b.sh"]
文档下载链接:
http://kos.ieisystem.com/kos-isos/kos_docker/docker_cpu/Dockerfile
第一步:制作镜像,根据dockerfile构建image,命令如下:
docker build -t deepseek-kos-7b .

第二步:导出构建的image,命令如下:
docker save -o deepseek-kos-7b01.tar deepseek-kos-7b:latest

第三步:加载docker镜像
docker load -i deepseek-kos-7b.tar

第四步:启动docker容器
查看容器镜像

docker run -d -p 11464:11434 --name ds-kos-7b deepseek-kos-7b:latest
注意:
-p 11434:11434是将容器中的11434端口开放。
ds-kos-7b:容器的名称,注意不可与已经使用的容器重名。
deepseek-kos-7b:latest:容器镜像的名称和标签,可通过docker images查询

docker run -d -p 11464:11434 --name ds-kos-7b0302 deepseek-kos-7b:latest
![]()
第五步:进入镜像执行一键执行start,命令如下:
docker exec -it c8aea91d41cab51ab32d04fb248a3cd0bfbb8caf8f00cb8aad54cb738ed1c612 bash
c8aea91d41cab51ab32d04fb248a3cd0bfbb8caf8f00cb8aad54cb738ed1c612 容器ID是可变的,与步骤四有关。
为了启动大模型,进入容器,执行命令 : sh /start_7b.sh
注:
start_7b.sh 文件下载链接:http://kos.ieisystem.com/kos-isos/kos_docker/start_cpu/start-7b.sh
如下图所示:

第六步:开放主机防火墙端口,执行如下命令:(不推荐直接关闭防火墙服务)
firewall-cmd --zone=public --add-port=11434/tcp --permanent && firewall-cmd --reload
2 镜像使用测试
制作完成镜像后可以通过docker服务进行加载启用,具体步骤如下:
第一步:KOS下在线安装docker。
第二步:将deepseek-kos-docker-xxb.tar拷贝到KOS系统下。
第三步:以deepseek-kos-docker-1.5b.tar为例加载镜像,如下图:

第四步:运行镜像,创建的镜像开启,需要开对外的端口。
如:
docker run -d -p 11434:11434 --name ds-kos-1.5b deepseek-kos-docker-1.5b:latest

第五步:放开防火墙端口。
firewall-cmd --zone=public --add-port=11888/tcp --permanent && firewall-cmd --reload

第六步:验证
安装chatbox,设置如下:
模型提供方选择PLLAMA API,API域名设置,模型可以自动选择出来。


使用示例:

3 常见问题
启动的时候名称不可重复,否则会报错
![]()
说明已经存在相同名称的镜像在运行。
解决方法:修改容器的名称后再启动。
写在最后:更多AI学习资料请添加学习助手领取资料礼包

视频学习资料:
从0开始开发超级AI智能体,干掉所有重复工作
- 基于字节的coze平台从0到1搭建我们自己的智能体
- 从coze到超级创业个体:2025是AI Agent大爆炸的元年!
- 搭建智能体的七大步骤:需求梳理、软件选型、提示工程、数据库、构建 UI 界面、测试评估、部署
- 你的智能体如何并行调用多个通用AI大模型?
- 实战案例:AI Agent提取小红书文案以及图像进行OCR文字识别并同步写入飞书多维表格
- 实战案例:AI Agent提取抖音爆款短视频链接中的文案,基于大模型和提示词完成符合小红书风格和作者特点的文案仿写
DeepSeek AI Agent +自动化助力企业实现 AI 改造实战
- DeepSeek 大模型的本地部署与客户端chatbox本地知识库
- 程序员的跨时代产品,AI 代码编辑器cursor深入浅出与项目构建
- 软件机器人工具影刀RPA工业化地基本使用
- 影刀RPA WEB自动化采集Boss直聘岗位信息并存储
- 影刀AI Power与DeepSeek 工作流构建影刀AI Agent
- AI HR实战:结合影刀RPA+DeepSeek AI智能体,实现智能自动招聘机器人
大模型技术+ 数字人+混剪造就副业王炸组合
- 数字人的概念与价值
- 当前数字人的时代背景
- 数字人的市场需求
- 数字人与自媒体的关系和发展路径
- 商业化数字人的变现之路
- 基于coze搭建数字人超级智能体
- 大模型技术+数字人+混剪=最强副业方向
- AI大模型与数字人造就3分钟获客300条精准线索
- AI副业接单渠道与流量变现
- 程序员开发的AI数字人实战
4万+

被折叠的 条评论
为什么被折叠?



