6.3 使用回调函数在训练过程中保存模型

本文介绍了如何在TensorFlow中使用ModelCheckpoint回调函数在训练过程中定期保存模型权重,以便在训练中断后能轻松恢复。通过实例演示了如何设置保存路径、配置回调,并展示如何加载已保存的权重进行继续训练或评估。
摘要由CSDN通过智能技术生成

在训练期间保存检查点

在训练期间或训练结束时自动保存检查点。这样一来,您便可以使用经过训练的模型,而无需重新训练该模型,或从上次暂停的地方继续训练,以防训练过程中断。


回调函数:

        tf.keras.callbacks.ModelCheckpoint
 

checkpoint_path = 'training_cp/cp.ckpt'
cp_callback = tf.keras.callbacks.ModelCheckpoint(
    checkpoint_path,
    save_weights_only=True)


model = tf. keras.Sequential()
model.add(tf. keras.layers.Flatten(input_shape=(28,28)))# 28*28
model.add(tf. keras.layers.Dense(128,activation='relu'))
mode1.add(tf.keras.layers.Dense(10,activation='softmax'))I

mode1.compile(optimizer='adam’, loss='sparse_categorical_crossentropy',metrics=['acc'])
model.fit(train_image,train_label,epochs=3,callbacks=Icp_callback])

mode1.evaluate(test_image,test_label,verbose=0)


mode1.load_weights(checkpoint_path)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值