6.11 批标准化

批标准化是深度学习中的一种数据处理方法,通过在每次前向传播后标准化神经网络的激活,加速收敛,提高模型泛化能力,并有助于深网训练。Keras中常用layers.BatchNormalization()实现批标准化,常置于卷积层或全连接层后。
摘要由CSDN通过智能技术生成

一、什么是标准化

传统机器学习中标准化也叫做归一化,

一般是将数据映射到指定的范围,用于去除不同维度数据的量纲以及量纲单位。

数据标准化让机器学习模型看到的不同样本彼此之间更加相似,这有助于模型的学习与对新数据的泛化。

常见的数据标准化形式:

标准化和归一化

将数据减去其平均值使其中心为 0,然后将数据除以其标准差使其标准差为 1。

标准化:减均值,除方差

归一化:减最小值,除最大值减最小值

二、什么是批标准化

Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法

批标准化:

        不仅在将数据输入模型之前对数据做标准化。
        在网络的每一次变换之后都应该考虑数据标准化

        即使在训练过程中均值和方差随时间发生变化,它也
        可以适应性地将数据标准化

好处:

我们知道数据预处理做标准化可以加速收敛,同理,在神经网络使用标准化也可以加速收敛,而且还有更多好处。

1、具有正则化的效果
2、提高模型的泛化能力
3、允许更高的学习速率从而加速收敛
4、批标准化有助于梯度传播,因此允许更深的网络。对于有些特别深的网络,只有包含多个
BatchNormalization 层时才能进行训练。

三、Keras实现批标准化

BatchNormalization 广泛用于 Keras 内置的许多高级卷积神经网络架构,比如 ResNet50、 InceptionV3 和 Xception

BatchNormali

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值