一、什么是标准化
传统机器学习中标准化也叫做归一化,
一般是将数据映射到指定的范围,用于去除不同维度数据的量纲以及量纲单位。
数据标准化让机器学习模型看到的不同样本彼此之间更加相似,这有助于模型的学习与对新数据的泛化。
常见的数据标准化形式:
标准化和归一化
将数据减去其平均值使其中心为 0,然后将数据除以其标准差使其标准差为 1。
标准化:减均值,除方差
归一化:减最小值,除最大值减最小值
二、什么是批标准化
Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法
批标准化:
不仅在将数据输入模型之前对数据做标准化。
在网络的每一次变换之后都应该考虑数据标准化
即使在训练过程中均值和方差随时间发生变化,它也
可以适应性地将数据标准化
好处:
我们知道数据预处理做标准化可以加速收敛,同理,在神经网络使用标准化也可以加速收敛,而且还有更多好处。
1、具有正则化的效果
2、提高模型的泛化能力
3、允许更高的学习速率从而加速收敛
4、批标准化有助于梯度传播,因此允许更深的网络。对于有些特别深的网络,只有包含多个
BatchNormalization 层时才能进行训练。
三、Keras实现批标准化
BatchNormalization 广泛用于 Keras 内置的许多高级卷积神经网络架构,比如 ResNet50、 InceptionV3 和 Xception
BatchNormali

批标准化是深度学习中的一种数据处理方法,通过在每次前向传播后标准化神经网络的激活,加速收敛,提高模型泛化能力,并有助于深网训练。Keras中常用layers.BatchNormalization()实现批标准化,常置于卷积层或全连接层后。
最低0.47元/天 解锁文章
1167

被折叠的 条评论
为什么被折叠?



