一、网络容量
概念:
可以认为与网络中的可训练参数成正比
网络中的神经单元数越多,层数越多,神经网络的拟合能力越强。但是训练速度、难度越大,越容易产生过拟合。
二、如何选择超参数
所谓超参数,也就是搭建神经网络中,需要我们自己选择(不是通过梯度下降算法去优化)的那些参数。
比如,中间层的神经元个数、学习速率
三、如何提高网络的拟合能力
一种显然的想法是增大网络容量:
1.增加层
2.增加隐藏神经元个数
这两种方法哪种更好呢?
单纯的增加神经元个数对于网络性能的提高并不明显,
增加层会大大提高网络的拟合能力。这也是为什么现在深度学习的层越来越深的原因。
注意:
单层的神经元个数,不能太小,太小的话,会造成信息瓶颈,使得模型欠拟合
四、参数选择原则
理想的模型是刚好在欠拟合和过拟合的界线上,也就是正好拟合数据。
超参数的选择是一个经验与不断测试的结果。
经典机器学习的方法,如特征工程、增加训练数据也要做交叉验证。
五、步骤
首先开发一个过拟合的模型:
- 添加更多的层。
- 让每一层变得更大。
- 训练更多的轮次
然后,抑制过拟合:
- dropout
- 正则化
- 图像增强
再次,调节超参数:
- 学习速率,
- 隐藏层单元数
- 训练轮次
8万+

被折叠的 条评论
为什么被折叠?



