6.12 超参数选择原则

一、网络容量

概念:

可以认为与网络中的可训练参数成正比

网络中的神经单元数越多,层数越多,神经网络的拟合能力越强。但是训练速度、难度越大,越容易产生过拟合。

二、如何选择超参数

所谓超参数,也就是搭建神经网络中,需要我们自己选择(不是通过梯度下降算法去优化)的那些参数。


比如,中间层的神经元个数、学习速率

三、如何提高网络的拟合能力

一种显然的想法是增大网络容量:
        1.增加层
        2.增加隐藏神经元个数

这两种方法哪种更好呢?
        单纯的增加神经元个数对于网络性能的提高并不明显,
增加层会大大提高网络的拟合能力。这也是为什么现在深度学习的层越来越深的原因。

注意:
        单层的神经元个数,不能太小,太小的话,会造成信息瓶颈,使得模型欠拟合

四、参数选择原则

理想的模型是刚好在欠拟合和过拟合的界线上,也就是正好拟合数据。

超参数的选择是一个经验与不断测试的结果。
经典机器学习的方法,如特征工程、增加训练数据也要做交叉验证。
 

五、步骤

首先开发一个过拟合的模型:

  1. 添加更多的层。
  2. 让每一层变得更大。
  3. 训练更多的轮次

然后,抑制过拟合:

  1.  dropout
  2. 正则化
  3. 图像增强

再次,调节超参数:

  1. 学习速率,
  2. 隐藏层单元数
  3. 训练轮次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值