EaHalen
码龄5年
关注
提问 私信
  • 博客:31,111
    31,111
    总访问量
  • 37
    原创
  • 471,738
    排名
  • 13
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2020-04-11
博客简介:

weixin_46994240的博客

查看详细资料
个人成就
  • 获得34次点赞
  • 内容获得1次评论
  • 获得64次收藏
  • 代码片获得124次分享
创作历程
  • 37篇
    2022年
成就勋章
TA的专栏
  • 六、卷积神经网络高级应用
    12篇
  • 01 - 侯捷 - C++面向对象高级开发
    7篇
  • 五、计算机视觉 --- 卷积神经网络
    7篇
  • 三、多层感知器与神经网络
    8篇
  • 四、Keras基础实例
    3篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

473人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

07_三大函数:拷贝构造、拷贝赋值、析构

一、Classes的两个经典分类二、String Class
原创
发布博客 2022.07.25 ·
181 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

06_复习complex的实现过程

复数的实现main.cpp
原创
发布博客 2022.06.15 ·
224 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

06_复习complex的实现过程

复数的实现main.cpp
原创
发布博客 2022.06.15 ·
224 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

05_操作符重载与临时对象

一、操作符重载 —— 1、成员函数 thisthis指向调用者一)return by reference 语法分析传递者无需知道接收者是以 reference 形式接收二)class body 之外的各种定义(definitions)二、操作符重载 —— 2、非成员函数(无this)为了对付client的三种可能用法,这里对应开发三个函数三、临时对象(temp object) 1、下面这些函数绝不可 retu...
原创
发布博客 2022.05.29 ·
194 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

04_参数传递与返回值

一、常量成员函数(const members function)二、参数传递: pass by value vs. pass by reference(to const)三、返回值传递:return by value vs, return by reference(to const)四、友元(friend)C++ 通过private 让其具有封装性,friend打破了这种封装性一)相同 class 的各个 objects 互为 friends...
原创
发布博客 2022.05.29 ·
173 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

03_构造函数

一、inline(内联)函数二、访问级别(access level)三、构造函数(constructor)创建对象的时候,构造函数自然而然会被调用起来重载(OverLoading) —— 构造函数可以有很多个
原创
发布博客 2022.05.29 ·
240 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

02_头文件与类的声明

一、C Vs C++ (在数据与函数上角色的不同作比较)二、C++ 关于数据和函数三、Obeject Based(基于对象) vs. Object Oriented(面向对象)四、第一个C++程序
原创
发布博客 2022.05.08 ·
1678 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

01_C++编程简介

声明:原文章是繁体字,具体视频可在B站搜索看到。文章是一字一字敲出来的,朋友们可以加关注与点赞吗。有一说一,他是讲的真的不错的。一、应该具有的基础1、曾经学过某种面向过程的语言(Procedural Language)—— 比如C语言- 变量(Variables)- 类型(types)int, float, char, struct,,,- 作用域(scopes)- 循环(loops): while, for...
原创
发布博客 2022.05.08 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

6.6 前向传播与反向传播

一、深度学习网络本质深度学习网络本质是一种表示或者说映射网络输入一张图片 ------》 是猫的概率这就神经网络做的事情二、前向传播与反向传播前向传播:输入一张图片 ------》 概率反向传播:计算这个概率与实际的差距,叫做损失或者误差误差将被反向传递给网络的每一层三、预训练网络我们使用了预训练网络的前向传播过程使用网络做出预测,就是在使用网络前向传播的过程1、为什么训练网络过程这么慢...
原创
发布博客 2022.04.04 ·
452 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

6.7 使用预训练网络 2.0 实现猫狗分类

keras内置经典网络实现covn_base = keras.applications.VGG16(weights='imagenet', include_top=False, input_shape=(200, 200, 3))covn_base.summary()batch_size=20def extract_features(dat
原创
发布博客 2022.04.04 ·
147 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

6.8 使用预训练网络 3.0 实现猫狗分类 --- 微调

微调所谓微调: 冻结模型库的底部的卷积层,共同训练新添加的分类器层和顶部部分卷积层。这允许我们“微调”基础模型中的高阶特征表示,以使它们与特定任务更相关。只有分类器已经训练好了,才能微调卷积基的顶部卷积层。如果有没有这样的话,刚开始的训练误差很大,微调之前这些卷积层学到的表示会被破坏掉微调步骤一、在预训练卷积基上添加自定义层二、冻结卷积基所有层三、训练添加的分类层四、解冻卷积基的一部分层在1.0版本基础上添加covn_base.trainable...
原创
发布博客 2022.04.04 ·
266 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

6.9 常见的预训练网络模型

一、可用的模型在ImageNet上预训练过的用于图像分类的模型:VGG16VGG19ResNet50InceptionV3InceptionResNetV2XceptionMobileNetMobileNetV2DenseNetNASNet二、Xception使用实例tf.keras.applications.xception.Xception(include_ top=True, weights= imagenet', input tensor=No...
原创
发布博客 2022.04.04 ·
827 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

6.10 输出层总结

回归问题 ------ 输出一个连续的值 --- 没有激活函数二分类问题 ------ 输出一个概率值 --- sigmoid激活多分类问题 ------ 输出N个值 --- softmax激活多标签问题
原创
发布博客 2022.04.04 ·
422 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

6.11 批标准化

一、什么是标准化传统机器学习中标准化也叫做归一化,一般是将数据映射到指定的范围,用于去除不同维度数据的量纲以及量纲单位。数据标准化让机器学习模型看到的不同样本彼此之间更加相似,这有助于模型的学习与对新数据的泛化。常见的数据标准化形式:标准化和归一化将数据减去其平均值使其中心为 0,然后将数据除以其标准差使其标准差为 1。标准化:减均值,除方差归一化:减最小值,除最大值减最小值二、什么是批标准化Batch Normalization, 批标准化, 和普通的数据标准化类似
原创
发布博客 2022.04.04 ·
182 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

6.12 超参数选择原则

一、网络容量概念:可以认为与网络中的可训练参数成正比网络中的神经单元数越多,层数越多,神经网络的拟合能力越强。但是训练速度、难度越大,越容易产生过拟合。二、如何选择超参数所谓超参数,也就是搭建神经网络中,需要我们自己选择(不是通过梯度下降算法去优化)的那些参数。比如,中间层的神经元个数、学习速率三、如何提高网络的拟合能力一种显然的想法是增大网络容量:1.增加层2.增加隐藏神经元个数这两种方法哪种更好呢?单纯的增加...
原创
发布博客 2022.04.04 ·
441 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

6.5 使用 VGG 预训练网络实现猫狗分类

一)代码实现迁移学习import tensorflow as tfimport kerasfrom keras import layersimport numpy as npimport osimport shutilbase_dir = './dataset/cat_dog'train_dir = base_dir + '/train'train_dog_dir = train_dir + '/dog'train_cat_dir = train_dir + '/cat't..
原创
发布博客 2022.04.04 ·
266 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

6.4 预训练网络(迁移学习)基础概念

一、预训练网络预训练网络是一个保存好的之前已在大型数据集(大规模图像分类任务)上训练好的卷积神经网络。如果这个原始数据集足够大且足够通用,那么预训练网络学到的特征的空间层次结构可以作为有效的提取视觉世界特征的模型。即使新问题和新任务与原始任务完全不同学习到的特征在不同问题之间是可移植的,这也是深度学习与浅层学习方法的一个重要优势。它使得深度学习对于小数据问题非常的有效。二、 Keras内置预训练网络Keras库中包含VGG16、 VGG...
原创
发布博客 2022.04.03 ·
977 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

6.3 使用回调函数在训练过程中保存模型

在训练期间保存检查点在训练期间或训练结束时自动保存检查点。这样一来,您便可以使用经过训练的模型,而无需重新训练该模型,或从上次暂停的地方继续训练,以防训练过程中断。回调函数:tf.keras.callbacks.ModelCheckpointcheckpoint_path = 'training_cp/cp.ckpt'cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, ...
原创
发布博客 2022.04.03 ·
302 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

6.2 模型保存 --- 加载和保存模型结构&权重

一、只保存/加载模型的结构保存模型的结构,而非其权重或训练配置项:json_string = model.to_json()model.save('my_model.h5')my_model_json = model.to_json()with open('my_json_model.json', 'w') as f: f.write(my_model_json)from keras.models import model_from_jsonmodel = model_fr.
原创
发布博客 2022.04.03 ·
2860 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

6.1 Keras模型保存 ---- 加载和保存整个模型

一、模型保存依赖包Keras 模型保存为 HDF5 文件Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装二、保存/加载整个模型不建议使用 pickle 或 cPickle 来保存 Keras 模型。使用 model.save(filepath) 将 Keras 模型保存到单个HDF5 文件中。三、Keras卷积实例 手写数据集import tensorflow as tfimpo...
原创
发布博客 2022.04.03 ·
3829 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏
加载更多