数据校验的基本原理
- 受元器件的质量、电路故障或噪音干扰等因素的影响,数据在被处理、传输和存储的过程中可能出现错误。
通过硬件设计检验错误并修正,减少软件检错的代价。 - 基本原理
增加冗余项。
| 数据位 | 冗余位(校验位) |
|---|---|
| k位 | r位 |
- 码距:同一编码中,任意两个合法编码之间不同二进制位数的最小值。
校验码增加冗余位就是为了增大码距。 - 码距与检错纠错能力的关系:
码距≥e+1,可检测e个错误;
码距≥2t+1,可纠正t个错误;
码距≥e+t+1,(e≥t)可检测e个错误,纠正t个错误。
码距越大,抗干扰能力越强,纠错能力越强,数据冗余越大。电路也复杂。
奇偶校验
检验信息,冗余位r=1。
- **校验的原理:**根据有效信息计算校验信息位,使数据位和校验位中1的个数满足奇偶校验的规则。即1的个数是技术个还是偶数个。
- 偶校验:数据位和校验位异或,结果为零正常。
- 奇校验:数据位和校验位异或取反,结果为零正常。
- 奇偶校验的特点:
- 编码和检错简单
- 检验效率高。
- 但检测时如果两个位置上的不同数同时发生错误,可能检测不出来。无法纠错。
- 然后就有了改进的奇偶校验——方块奇偶校验等。
CRC循环冗余校验
- 原理
增加r位校验位,有效信息位k位,则应满足 N = k + r ≤ 2 r − 1 N=k+r≤2^r-1 N=k+r≤2r−1. - 生成多项式G(x)
收发双方约定一个(r+1)位的二进制数G(x),发送方利用G(x)对有效信息多项式进行模2除运算,生成校验码。接收方利用G(x)对接收到的二进制多项式进行模2除运算监测差错及错误定位。 - 生成多项式G(x)应满足的条件
- G(x)的首位和末位必须为1;
- 当被传送信息的任何一位发生错误时,被生成多项式做模2除后的余数不为0
- 不同位发生错误时,余数不同
- 对不为0的余数做G(x)的模2除运算,余数循环。
常见的生成多项式:

-
模2除运算规则
- 加/减运算不进位不借位,即为异或运算。
- 模2除法:按模2减,求部分余数,不借位。
- 上商原则:
当部分余数的首位为1时,商1,减除数;
当部分余数首位为0时,商0,减除数;
当部分余数尾数小于除数时,结束,部分余数即为最终余数。
-
CRC编码方法
- 根据有效信息位k,按上边的公式确定r,查表获得r+1位的G(x);
- 将有效信息位左移r位;
- 用左移后的二进制数对G(x)做模2除运算,用得到的余数替换最后r位,即得到最终编码。
-
CRC检错与纠错
接收方对接收到的编码做模2除运算,余数不为零说名出现错误。
由于不同位错误的余数不同可以根据余数确定发生错误的位置。
当一位出错时,对余数做模2除运算,余数有循环特性,错误位发生左移。
硬件实现的一个例子

海明校验码
- 原理
也是有k位有效信息位,r位校验位,满足 k + r ≤ 2 r − 1 k+r≤2^r-1 k+r≤2r−1
设k+r位编码从左到右一次为1,2,3,4,5…k+r,r位校验位计为Pi,分别位于编码的第 2 i − 1 2^{i-1} 2i−1位上,其余位置为有效信息位。
Hj的数据有小于j的若干个海明位之和为j的校验位所校验。
以7/4校验为例

然后异或计算Pi

设置指错字G1G2G3G4

指错位转换成10进制就是发生错误的数位。 - 海明码的特点
- 指错码为0不一定无错。
- 不能区别一位和两位的错
所以可以将海明码和奇偶校验结合起来使用。
2500

被折叠的 条评论
为什么被折叠?



