up-to-star
码龄5年
关注
提问 私信
  • 博客:61,668
    动态:2
    61,670
    总访问量
  • 67
    原创
  • 1,295,307
    排名
  • 29
    粉丝
  • 0
    铁粉

个人简介:做个努力善良的人

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2020-04-13
博客简介:

weixin_47037146的博客

查看详细资料
个人成就
  • 获得35次点赞
  • 内容获得18次评论
  • 获得236次收藏
  • 代码片获得489次分享
创作历程
  • 4篇
    2023年
  • 63篇
    2021年
成就勋章
TA的专栏
  • 彩笔吃瓜
    7篇
  • Linux网络编程
    3篇
  • sklearn学习
    8篇
  • pytorch入门学习
    2篇
  • acwing算法基础课学习笔记
    28篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

XV6实验(2020)

Xv6(和其他Unix操作系统一样)中的隔离单位是一个进程。进程抽象防止一个进程破坏或监视另一个进程的内存、CPU、文件描述符等。它还防止一个进程破坏内核本身,这样一个进程就不能破坏内核的隔离机制。内核用来实现进程的机制包括用户/管理模式标志、地址空间和线程的时间切片。Xv6为每个进程维护一个单独的页表,定义了该进程的地址空间。如图2.3所示,以虚拟内存地址0开始的进程的用户内存地址空间。首先是指令,然后是全局变量,然后是栈区,最后是一个堆区域(用于malloc)以供进程根据需要进行扩展。
原创
发布博客 2023.02.02 ·
2872 阅读 ·
7 点赞 ·
0 评论 ·
32 收藏

基本UDP套接字编程

指向一个由该函数返回时填写数据报发送者的协议地址的套接字地址结构。:标志位,0阻塞,MSG_DONTWAIT非阻塞。:指向含有数据报接收者的协议地址。:指向读入或写出缓冲区的指针。:读入或写出的字节数。
原创
发布博客 2023.01.24 ·
1456 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基本TCP套接字编程

把一个未连接的套接字转换成一个被动套接字,指示内核应接受指向该套接字的连接请求。服务器调用该函数,用于从已完成连接队列队头返回下一个已完成连接,如果已完成连接队列为空,则进程进入睡眠状态。系统中常常仅创建一个监听套接字进程,而当三次握手完成后,系统会为每个连接建立一个已连接套接字。服务器调用该函数后,可能会返回错误值或一个全新的套接字描述符,参数中的第一个参数一般称为。函数创建套接字时,被设定为一个主动套接字,是一个将调用。:完成三次握手的套接字所维护的队列。,调用函数后,返回一个新的套接字称为。
原创
发布博客 2023.01.22 ·
1485 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

套接字编程基础

网络编程学习第一天
原创
发布博客 2023.01.19 ·
1640 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

sklearn入门——聚类算法KMeans

概述聚类算法是无监督学习的代表算法之一,也叫“无监督分类”。目的是将数据分为若干有意义或有用的组,通常根据实际需求来进行划分。聚类可以用于降维和矢量量化(vectorquantization),可以将高维特征压缩到一列当中,常常用于图像,声音,视频等非结构化数据,可以大幅度压缩数据量。核心是将数据分为多个组,探索每个组的数据是否有联系。KMeans的工作原理簇与质心KMeans将数据划分称若干个无交集的簇,每个簇就是一个一组聚集在一起的数据集,在一个簇中的数据视为同一类,簇是聚类的结果体现。质心就
原创
发布博客 2021.11.11 ·
4825 阅读 ·
1 点赞 ·
1 评论 ·
13 收藏

pytorch--梯度相关

什么是梯度我也不知道什么是梯度。从中学学的倒数说起,倒数反应了函数沿某个方向的变化率。然后就到了偏微分,偏微分是限定沿给定方向的变化率,而梯度就是函数关于所有自变量偏微分组成的向量。梯度的方向反应了函数上升或下降的方向,而梯度的大小反映了下降或上升的快慢。梯度下降:θi∗=θi−eps∗∂y∂θi\theta_{i}^{*}=\theta_{i}-eps*\frac{\partial y}{\partial \theta_{i}}θi∗​=θi​−eps∗∂θi​∂y​,梯度下降时会遇到局部最小值的问题
原创
发布博客 2021.11.03 ·
567 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch--数据类型及操作

基本数据类型Tensortensor是pytorch中的特殊数据类型,和numpy的数组类似,不过tensor可以在GPU和其他加速器上运行。初始化tensor直接从数据初始化data = [xxx]x_data = torch.tensor(data)从numpy数据初始化x_data = torch.from_numpy(np.array())从其他tensor初始化...
原创
发布博客 2021.11.01 ·
537 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

sklearn入门——逻辑回归

什么是逻辑回归逻辑回归也叫对数几率回归,在西瓜书中有介绍,吃瓜的时候也学过,可惜呀,脑子不好使,全忘了。重新学一下吧。。。。在理解对数几率回归之前需要先理解线性回归。线性回归的任务,就是构造一个预测函数 来映射输入的特征矩阵x和标签值y的线性关系,具体以公式体现如下:z=θ0+θ1x1+θ2x2+...+θnxnz = \theta_0+\theta_1x_1+\theta_2x_2+...+\theta_nx_nz=θ0​+θ1​x1​+θ2​x2​+...+θn​xn​写成矩阵形式为:构造预
原创
发布博客 2021.08.14 ·
1854 阅读 ·
0 点赞 ·
2 评论 ·
9 收藏

sklearn入门——降维算法

概述
原创
发布博客 2021.08.12 ·
1129 阅读 ·
1 点赞 ·
3 评论 ·
11 收藏

sklearn入门——特征选择

过滤法过滤法是在机器学习训练之前进行的数据预处理,根据各种统计检验指标筛选出较好的特征子集。方差过滤VarianceThreshold类通过特征的方差来筛选特征的类。有些特征的方差很小,所以要首先消除方差为0的特征。其中的参数threshold,表示方差的阈值,消除方差小于阈值的特征,默认值是0.相关操作及注释:import pandas as pdimport numpy as npfrom sklearn.feature_selection import VarianceThresh
原创
发布博客 2021.08.09 ·
1853 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

sklearn入门——数据预处理

概述数据预处理就是处理从数据中检测,纠正或删除损坏,不准确或不适用模型的记录的过程。可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断,也有可能数据的质量不行,存在噪声,有异常,有缺失等。数据预处理的目的就是让数据适应模型,匹配模型的需求。特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特征,提取特征以及创造特征来实现。其中创造特征又经常以降维算法的方式实现。可能面对的问题有:特征之间有相关性,特征和标签无关,特征太
原创
发布博客 2021.08.08 ·
498 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

sklearn入门——随机森林

集成算法概述集成学习是通过在数据上构建多个模型,集成所有的模型的结果。常用的有随机森林、梯度提升树、Xgboost等。其目标是考虑多个评估器的建模结果,汇总后得到一个综合结果,以此来获取比单个模型更好的回归或分类表现。多个模型集成成为的模型叫做集成评估器,组成集成评估器的每个模型都叫做基评估器,通常有三类集成算法:袋装法(Bagging),提升法(Boosting),和Stacking。袋装法:构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果。袋装法的结果就是随机森
原创
发布博客 2021.08.07 ·
1926 阅读 ·
1 点赞 ·
0 评论 ·
14 收藏

sklearn入门——回归树

重要参数、属性及接口criterion回归树衡量分支质量的指标,支持的标准有三种:1)输入“mse”使用均方误差(mean squared error),父节点和子节点之间的均方误差的差额来作为特征选择的标准,通过使用叶子节点的均值来最小化L2损失。2)输入"friedman_mse"使用费尔德曼均方误差,这种指标使用费尔德曼针对潜在分支中的问题改进后的均方误差。3)输入"mae" 使用绝对平方误差,使用节点的中值来最小化L1损失其他属性也包括feature_importances_,接口有
原创
发布博客 2021.08.04 ·
797 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sklearn入门——分类树

概述据说这个教程是侧重于应用的,原理的我还没搞太懂,吃瓜也就看了前六章,也是模模糊糊。。。。。流程是:实例化,建立评估模型对象;通过模型接口训练模型;通过模型接口提取需要的信息。对应的代码就是:from sklearn import treeclf = tree.DecisionTreeClassifier()clf = clf.fit(x_train,y_train)result = clf.score(x_test,y_test)...
原创
发布博客 2021.08.04 ·
335 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

最长上升子序列模型(一)

原型:最长上升子序列最长上升子序列题目描述给定一个长度为 N 的数列,求数值严格单调递增的子序列的长度最长是多少。分析代码#include<bits/stdc++.h>using namespace std;const int N = 1010;int f[N],a[N];int n;int main(){ scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&
原创
发布博客 2021.07.31 ·
250 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数字三角形模型

原型题目题目描述给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。73 88 1 02 7 4 44 5 2 6 5分析状态表示:f[i,j]表示走到(i,j)的所有路径的数字之和的集合;属性:数字之和的最大值。状态计算:考虑最后一步的走法,最后一步可以从左上或右上走来,因此有上一个点进行状态更新,即:f[i,j]=max(f[i
原创
发布博客 2021.07.30 ·
197 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

支持向量机

间隔与支持向量在感知机中,对于线性可分的问题,得到的超平面是不唯一的,因此支持向量机的目标是找到一个距离正负样本都最远的超平面,解是唯一的,泛化性能最好。超平面在样本空间中,超平面可通过下面的线性方程描述:wTx+b=0w^Tx+b=0wTx+b=0超平面的特点:超平面方程不唯一法向量和位移项 确定一个唯一超平面法向量垂直于超平面(缩放时,若缩放倍数为负数会改变法向量方向)法向量指向的那一半空间为正空间,另一半为负空间任意点到超平面的距离公式为:∣wTx+b∣∣∣w∣∣\frac
原创
发布博客 2021.07.29 ·
489 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

神经网络初学

前言很早就听说了神经网络,上学期在一个老师那儿也了解了一些,但总感觉神经网络太难,不敢去学,这次跟着Datawhale组队学习,虽然模模糊糊也算入门了吧。。。。神经元模型在生物神经网络中,每个神经元与其他神经元相连,当神经元兴奋时,会向相连的神经元传递化学物质,改变神经元内的电位分布,当电位超过阈值时,就会被激活,向其他神经元传递信息。模拟生物神经元,机器学习抽象出了简单的模型。上图就是抽象的模型:M-P神经元模型。神经元收到来自其他n个神经元传递的输入信号,这些信号通过带权重的边进行传递,神
原创
发布博客 2021.07.23 ·
427 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

决策树

基本流程一棵决策树一般包含一个根结点、若干内部结点和若干叶结点。叶结点对应于决策结果,其他每个结点对应于一个属性测试,每个结点包含的样本集合根据属性测试的结果被划分到子结点中。在逻辑上,决策树对应一堆if else语句,决策树的生成过程是一个递归的过程,递归返回有:当前结点包含的样本全属于同一类别,无需划分;当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;当前结点包含的样本集合为空,不能划分。最终目的是将样本越分越纯划分选择信息增益自信息在信息论中将自信息定义为:I(X)=−l
原创
发布博客 2021.07.22 ·
109 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

虚拟存储器

虚拟存储器的描述主存也可以作为辅存的cache,这项技术就叫做虚拟存储器。物理地址:主存储器的地址。分类:页式虚拟存储器、段式虚拟存储器、段页式虚拟存储器。缺页:访问的也不在主存储器中。、虚拟地址:虚拟空间地址,当需要访问主存时需要通过地址映射转换为物理地址。地址转换:也叫地址映射,虚拟地址映射到物理地址的过程。虚拟地址到物理地址的转化采用MMU管理虚拟存储器与物理存储器采用页表来判断CPU要访问的内容是否在主存中,并与MUU配合实现虚拟地址和物理地址的转换。虚拟存储器地址划分在虚拟
原创
发布博客 2021.07.20 ·
564 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多