推荐 2 个 酷炫狂拽 的开源项目

4f88602197d9a38289c6ebf6b1eaf737.png

推荐两个开源的 AI 神器。

MinicBrush,给他一张参考图像,它能自动的模仿参考图像的风格,应用到你自己的图像上面,而且可以指定区域个性化编辑。 

DeepSeek:全球首个可以和 GPT-4 Turbo 掰掰手腕的代码生成大模型


01

MinicBrush:图片 PS 的 AI 神器

MimicBrush 是一个令人惊艳的开源项目,由阿里实验室(ali-vilab)开发。它不需要大量的训练数据,就能够模仿参考图像的风格和纹理。

用户可以上传一张源图像,绘制出需要编辑的区域,并提供一张参考图像,MimicBrush 将自动模仿参考图像的风格,应用到源图像上。

这项技术在图像编辑领域具有突破性意义,MimicBrush 利用深度学习模型,特别是两种 U-Net 结构,来实现对图像的零样本编辑。

1️⃣ 看看官方的示例

区域编辑

0be3b1131504101ed76b207f89ba6127.png

5e8f219df7bf95b3dfb92cd2ab2f806e.png

e8335440691070e82fc4a4d31c00960d.png

纹理转移

161869ee0ffc67d7804f3d4ce5c00673.png

64377563ae0263a5e1dd487f7b23bcfc.png

后处理

f7cde9d2a1ae343a6c1dc33830559ad2.png

2cf96eca25a37a0768afab730d72cac6.png

2️⃣ 怎么部署?

以下是使用 MimicBrush 进行图像编辑的简单代码示例,你可以把开源项目 clone 下来,安装依赖项,下载并设置模型权重的路径。运行Gradio演示或推理脚本,进行图像编辑。

开源地址:https://github.com/ali-vilab/MimicBrush

展示了如何下载预训练模型权重并运行 Gradio 演示:

from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
# 下载预训练的SD权重
sd_dir = ms_snapshot_download('xichen/cleansd', cache_dir='./modelscope')
print('=== Pretrained SD weights downloaded ===')
# 下载MimicBrush权重
model_dir = ms_snapshot_download('xichen/MimicBrush', cache_dir='./modelscope')
print('=== MimicBrush weights downloaded ===')
# 运行Gradio演示
python run_gradio3_demo.py

02

DeepSeek Coder:让代码自我编写的奥秘

在开源世界的深处,有一个项目正吸引着全球开发者的目光:DeepSeek Coder 。这个由 deepseek-ai 团队精心打造的项目,不仅仅是一个代码生成器,它是一个编程语言模型的集合,能够在多种编程语言上实现项目级别的代码完成和填充任务。

开源地址:https://github.com/deepseek-ai/DeepSeek-Coder

1️⃣ 专业评估

DeepSeek Coder 在多个编码相关的基准测试上进行了评估,成为全球首个在代码、数学能力上与GPT-4-Turbo 比肩的模型。

 看下图,这个开源的模型在代码、数学的多个榜单上位居全球第二,介于最强闭源模型 GPT-4o 和 GPT-4-Turbo 之间。

6a2aee5935c56567ddde2ccd1fcf42ff.png

2️⃣ 有啥亮点?

① 海量训练数据:从零开始训练,使用了2万亿个token,其中 87% 为代码,13% 为自然语言数据,涵盖中英文。

② 灵活且可扩展的模型尺寸:从 1B 到 33B 各尺寸模型都有,适应不同用户的需求。

③ 高级代码完成能力:支持项目级别的代码完成和填空任务,窗口大小达到 16K。

支持的编程语言

④ 语言支持情况:支持超过40种编程语言,从常见的 Python、Java、C++ 到更为专业的 Ada、Erlang、Haskell 等,几乎涵盖了软件开发的方方面面。

⑤ 提供模型微调脚本:让用户可以在特定下游任务上进一步优化模型性能。


推荐阅读

1. GitHub 上有什么好玩的项目?

2. 推荐 5 个本周很火的 GitHub 项目

3. 推荐 5 个近期火火火的 GitHub 项目

4.  推荐 5 个令人惊艳的 GitHub 项目

457d4ed0d4e6574d799b36e5be8eadd2.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值