
1、文章贡献
深度残差收缩网络是对残差网络Resnet的一种改进,主要是针对样本数据中含有的噪声问题所提出的,这些噪声的存在会影响卷积神经网络对特征的提取。
一个比较直观的理解是在对猫狗图像进行分类,噪声就好比是混入了几张老鼠图对分类器造成了干扰,导致分类器的准确度下降。又或者是在车声嘈杂的环境下说话,根本听不清对方在说啥。
为了解决这类噪声问题,文章提出了深度残差收缩网络来改进,将不重要的噪声信息进行删除,而将重要的信息进行保留。
2、经典Resnet
- 图a是一个基础的残差建筑单元(RBU),由两个BN、两个Relu、两个卷积层和一个恒等映射连接构成。恒等映射的使用能够让梯度有效地流向较早的层,那些层接近输入层,因此能有效地更新参数。
- 图b将输出特征图的宽度进行了减半,由此可以减少下面层的计算量。
- 图c将输出特征图的宽度进行了减半、通道数增加了一倍,由此可以将不同的特征集成为判别特征。
- 图d是由上述残差单元堆叠而成的残差网络。
3、DRSN网络构成
深度残差收缩网络(DRSN)可以说是深度残差网络、软阈值化、注意力机制的一个集成
通过注意力机制注意到不必要的特征,对其软阈值化置为0进行删除;或是注意到有用的特征将其保留。
3.1 软阈值化
软阈值化经常被作为信号降噪的关键步骤来使用
- 设定一个阈值范围,将特征绝对值小于该范围的值化为0进行删除,将特征绝对值大于该范围的值进行重新收缩到0附近
其中阈值τ是正数,并且阈值不能大于输入信号的最大值,否则在(9)式中可以明显发现,输出被置为0的特征范围将很大,即所有输出都将变成0
- 软阈值化的导数如下,其中导数要么是1,要么是0,与Relu激活函数类似,也由此有效的防止了梯度消失或梯度爆炸的问题。
- 软阈值函数和导数的图像
然而在传统的信号去噪算法中,阈值的选取往往比较困难,为了避免人工操作的麻烦,出现了DRSN自适应选择阈值的方法。
3.2 DRSN-CS
DRSN with channel-shared
残差收缩建筑单元(RSBU-CS)与残差建筑单元(RBU)不同,它有用于软阈值估计的特殊模块。
- 在特殊模块中,对输入特征图x的绝对值应用全局平均池化(GAP)得到一个一维向量后,经过两层FC和一层Sigmoid将参数缩放到0-1之间得到缩放系数α,最后将α与x的绝对值统一后相乘得到1×1×1的阈值。
- 图a是残差收缩建筑单元(RSBU-CS),图b是由残差单元堆叠的残差收缩网络(DRSN-CS),具有自适应选择阈值的优点。
3.3 DRSN-CW
DRSN with channel-wise
DRSN-CW是Resnet的另一种变体,与DRSN-CS不同之处在于,它是对特征图的不同通道应用单独的阈值。
- 与RSBU-CS步骤类似,在特殊模块中,第一条线路取输入特征图x的绝对值,经过全局平均池化(GAP)、FC、BN、Relu、Sigmoid得到0-1之间的参数α,另一条线路直接连接,最后得到C×1×1的阈值。
因此,阈值可以看成一个0-1之间的参数与输入特征图绝对值相乘得到的,既保证了阈值为正数,也不会使阈值太大。
4、实验分析
作者对普通卷积网络ConvNet、残差网络Resnet以及上述两种收缩网络DRSN-CS、DRSN-CW分别在高斯噪声、拉普拉斯噪声和粉红噪声的作用下进行实验
最后结果显示对噪声的抑制效果:DRSN-CW > DRSN-CS > Resnet > ConvNet
- 说明残差网络抗噪声效果比普通卷积网络好,而在残差网络的变体中,具有不同通道单独阈值的DRSN-CW又比统一阈值的DRSN-CS效果好
- 从特征信息图看,DRSN-CW的特征可分离程度更高
- DRSN-CW的训练测试误差更低
- 但DRSN-CS和DRSN-CW的计算时间相对较长,未来可以进一步优化结构来减少计算时间










1615

被折叠的 条评论
为什么被折叠?



