Win11的WSL2使用Docker部署深度学习环境-Python和Docker基操
文章目录
1. 配置WSL2
- 若没有安装WSL2,见我之前的博客。里面含有详细教程:
2. 配置Docker
-
针对于win系统下WSL子系统,安装Docker桌面版,Install Docker Desktop on Windows




-
检查安装是否成功

-
Docker数据迁移到磁盘
wsl --shutdown wsl --terminate docker-desktop-data wsl --export docker-desktop-data D:\docker-desktop-data\docker-desktop.tar wsl --unregister docker-desktop-data wsl --import docker-desktop-data D:\docker-desktop-data D:\docker-desktop-data\docker-desktop.tar -
安装成功

-
Linux系统的Docker安装,可参考以下指令
sudo apt-get update sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ gnupg \ lsb-release curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg echo \ "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null sudo apt-get update sudo apt-get install docker-ce docker-ce-cli containerd.io
3. Docker部署深度学习环境-Python和Docker基操
-
可使用Dockerfile进行环境部署,参考如下:
FROM pytorch/pytorch:1.6.0-cuda10.1-cudnn7-runtime COPY . /deploy WORKDIR /deploy RUN sed -i s@/deb.debian.org/@/mirrors.aliyun.com/@g /etc/apt/sources.list \ && apt-get clean \ && apt-get update \ && pip config set global.index-url https://mirror.baidu.com/pypi/simple \ && pip install --upgrade setuptools \ && pip install --upgrade pip \ && pip install -r requirements.txt EXPOSE 9535 ENTRYPOINT ["gunicorn", "-c", "gunicorn_cfg.py", "xx_xx:app"] -
这里我介绍一种极简的部署方式
-
拉取python镜像
docker pull python:3.9

-
查看镜像
docker images
-
使用该镜像创建容器并指定该容器可以使用所有的gpu资源
docker run -p 8001:5555 -it --name yolov8_python3.9 --gpus all python:3.9 /bin/bash

-
查看正在运行的容器
docker ps -
查看所有容器

-
安装pytorch并验证gpu是否可用

-
关闭容器
docker stop yolov8_python3.9 -
启动容器
docker start yolov8_python3.9 -
进入容器
docker exec -it -u root yolov8_python3.9 /bin/bash -
容器外部数据传入容器内部
docker cp 本地文件路径 容器ID/容器NAME:容器内路径 -
查看容器端口
docker port 容器NAME -
镜像提交
docker commit 448adec82e0c yolov8_python3.9 -
镜像打包tar
docker save -o yolov8_python3.9.tar yolov8_python3.9 -
镜像tar加载
docker load -i yolov8_python3.9.tar -
镜像删除
docker rmi yolov8_python3.9 -f -
容器删除
docker rm yolov8_python3.9
-
-
镜像提交至Docker Hub流程
- 账号登陆:
docker login - 镜像提交规范:
docker push 注册用户名称/镜像名 - tag修改镜像名称:
docker tag 镜像:镜像版本号 注册用户名称/镜像名:镜像版本号 - 镜像推送至Docker Hub:
docker push 注册用户名称/镜像名:镜像版本号
- 账号登陆:
若要转载请注明出处🚀,谢谢💕💕
6145

被折叠的 条评论
为什么被折叠?



