Win11的WSL2使用Docker部署深度学习环境-Python和Docker基操

Win11的WSL2使用Docker部署深度学习环境-Python和Docker基操

1. 配置WSL2

2. 配置Docker

  • 针对于win系统下WSL子系统,安装Docker桌面版,Install Docker Desktop on Windows
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 检查安装是否成功
    在这里插入图片描述

  • Docker数据迁移到磁盘

    wsl --shutdown
    wsl --terminate docker-desktop-data
    wsl --export docker-desktop-data D:\docker-desktop-data\docker-desktop.tar
    wsl --unregister docker-desktop-data
    wsl --import docker-desktop-data D:\docker-desktop-data D:\docker-desktop-data\docker-desktop.tar
    
  • 安装成功
    在这里插入图片描述

  • Linux系统的Docker安装,可参考以下指令

    sudo apt-get update
    
    sudo apt-get install \
        apt-transport-https \
        ca-certificates \
        curl \
        gnupg \
        lsb-release
    
    curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
    
    echo \
    "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \
    $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
    
    sudo apt-get update
    
    sudo apt-get install docker-ce docker-ce-cli containerd.io
    

3. Docker部署深度学习环境-Python和Docker基操

  • 可使用Dockerfile进行环境部署,参考如下:

    FROM pytorch/pytorch:1.6.0-cuda10.1-cudnn7-runtime
    
    COPY . /deploy
    WORKDIR /deploy
    
    
    RUN sed -i s@/deb.debian.org/@/mirrors.aliyun.com/@g /etc/apt/sources.list \
        && apt-get clean \
        && apt-get update \
        && pip config set global.index-url https://mirror.baidu.com/pypi/simple \
        && pip install --upgrade setuptools \
        && pip install --upgrade pip \
        && pip install -r requirements.txt
    
    
    EXPOSE 9535
    ENTRYPOINT ["gunicorn", "-c", "gunicorn_cfg.py", "xx_xx:app"]
    
  • 这里我介绍一种极简的部署方式

    • 拉取python镜像 docker pull python:3.9
      在这里插入图片描述

    • 查看镜像 docker images

      在这里插入图片描述

    • 使用该镜像创建容器并指定该容器可以使用所有的gpu资源 docker run -p 8001:5555 -it --name yolov8_python3.9 --gpus all python:3.9 /bin/bash
      在这里插入图片描述

    • 查看正在运行的容器 docker ps

    • 查看所有容器
      在这里插入图片描述

    • 安装pytorch并验证gpu是否可用

      在这里插入图片描述

    • 关闭容器 docker stop yolov8_python3.9

    • 启动容器 docker start yolov8_python3.9

    • 进入容器 docker exec -it -u root yolov8_python3.9 /bin/bash

    • 容器外部数据传入容器内部 docker cp 本地文件路径 容器ID/容器NAME:容器内路径

    • 查看容器端口 docker port 容器NAME

    • 镜像提交 docker commit 448adec82e0c yolov8_python3.9

    • 镜像打包tar docker save -o yolov8_python3.9.tar yolov8_python3.9

    • 镜像tar加载 docker load -i yolov8_python3.9.tar

    • 镜像删除 docker rmi yolov8_python3.9 -f

    • 容器删除 docker rm yolov8_python3.9

  • 镜像提交至Docker Hub流程

    • 账号登陆:docker login
    • 镜像提交规范:docker push 注册用户名称/镜像名
    • tag修改镜像名称:docker tag 镜像:镜像版本号 注册用户名称/镜像名:镜像版本号
    • 镜像推送至Docker Hub:docker push 注册用户名称/镜像名:镜像版本号

若要转载请注明出处🚀,谢谢💕💕

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小叶MW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值