震惊!全网唯一 直击范围分片本质[适用HBase、Tidb等]

本文从哈希分片的痛点出发,探讨了如何构造范围分片以优化路由分片模型,特别是针对范围查询的效率提升。通过分析,揭示了范围分片在批量读取、顺序IO、元数据优化以及灵活性方面的优势,并以HBase为例,展示了范围分片在实际系统中的应用和最佳实践。
摘要由CSDN通过智能技术生成

​一、前言

上周和朋友聊天感觉之前的文章起的题目太中二了,虽然目标是不做标题党,但本次决定使用“震惊体”!!试试效果~~

前几篇文章中,我们讲述了哈希分片的路由分片方式模型, 通过对《基础(加权)轮询》、《虚拟桶》、《一致性hash》模型进行分析后,不难发现哈希分片的路由分片模型,将客户端的读写请求尽可能均匀的分散到不同的后端节点中,并且使用不同的方法缓解节点上线和下线过程中分片迁移的问题(主要指后两种方案)。那么是否意味着hash分片并没有缺点呢?除了hash分片还有没有其他分片方式呢?我们带着这些问题,来开始本篇的重点。路由分片大法第二弹:范围分片

二、hash分片的痛点

我们跳出最近几篇hash分片的固有思维,重新看下路由分片,hash分片法是通过hash函数对key进行处理,然后分配在某个partition中,partition 最终又会通过一定的映射规则最终落在machine上。因此当需要查询一个key的value时,要经过key-partition的映射表和partition-machine的映射表去两次寻址,从而实现路由寻址。如果此时有成千上万个key要查询,会是什么样子呢?如上图所示,我们不难看出,当有海量的Key进行查询的时候,依旧会拆分成若干次单key路由,因此会不断重复两次寻址的过程,即使是相邻的两个Key,如Key1、Key2,也要重复相同的操作。由此也引出了hash分片最大的痛点,受hash路由分片模型的限制,hash分片只适合点查询,而不适合范围查询。

三、破题-构造范围分片

究竟怎样的路由分片架构适合范围查询呢?我们接下来结合《大数据基础-原来这就是路由分片》的思路来一步一步来将点查询模型逐渐演化成范围查询模型。

  • 厘清点查询和范围查询的关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值