大数据基础-路由分片
BigData之路
公众号[BigData之路]作者,欢迎pick,早期从事DBA,管理过几十套TB级别的数据库,后感受到大数据的魅力,逐渐转型到Hadoop上,曾就职于百度、电信行业公司,管理过近万节点的集群,现就职于“最年轻的世界500强”-小米,负责Hadoop生态的运营和探索。
展开
-
震惊!全网唯一 直击范围分片本质[适用HBase、Tidb等]
一、前言上周和朋友聊天感觉之前的文章起的题目太中二了,虽然目标是不做标题党,但本次决定使用“震惊体”!!试试效果~~前几篇文章中,我们讲述了哈希分片的路由分片方式模型, 通过对基础(加权)轮询、虚拟桶、一致性hash模型进行分析后,不难发现哈希分片的路由分片模型,将客户端的读写请求尽可能均匀的分散到不同的后端节点中,并且使用不同的方法缓解节点上线和下线过程中分片迁移的问题(主要指后两种方案)。那么是否意味着hash分片并没有缺点呢?除了hash分片还有没有其他分片方式呢?我们带着这些问题,来开始本原创 2020-08-15 18:45:30 · 387 阅读 · 0 评论 -
大数据基础-求锤得锤,你要的一致性hash来了(下)[附代码]
从实践中检验“真理”通过上一篇《大数据基础-求锤得锤,你要的一致性hash来了(上)[附代码]》的讲解,我们已经掌握了一致性hash的基本原理,其路由分片策略在类p2p模型架构中是非常典型的(之前提到的redis cluster也是p2p协议的一种实现),在节点宕机时的影响很小,只影响到一个分片。只看原理的话确实也就这么多了,那么其实际效果究竟是否和原理中完全一致?是否还存在一些问题呢?我们来逐一验证下。写这个系列文章以后,从后台看到收藏次数很多,我本身也是很开心,说明很多小伙伴还是有所收获的,.原创 2020-08-13 09:21:24 · 1629 阅读 · 9 评论 -
你要的一致性hash来了-上 [全网最深入浅出没有之一 + 附代码分析]
前言最近总有人问我一致性hash的事情,求锤得锤,我们今天就来聊聊看。前两篇我们分别介绍了两类哈希分片的方法:《基础轮询》和《虚拟桶》。 基础轮询法导致架构缺乏灵活性,需要扩、缩容一倍的节点才能保证50%的映射关系不变,否则查询命中率会更低,当有一台节点异常时,简直是灾难。 虚拟桶的分片方法在hash取模的基础上做了优化,符合通用的3层路由分片模型,此外将分片数量固定,避免了取模敏感度高的问题,节点变动后每台老节点会有部分分片迁移到新节点上。 虽然虚拟桶比hash取模好上很多,但总原创 2020-08-06 13:41:11 · 321 阅读 · 2 评论 -
大数据基础-原来这个“桶”也能路由分片
01 前言我们先回忆在上文《大数据基础-3行代码实现最基本的路由分片(附代码)》的主要内容,我们介绍了哈希分片的第一类常见套路,hash取模法(即基础轮询),并在一定程度上进行延伸,引出加权轮询的概念。最后我们对基础轮训和加权轮询的优缺点进行考量,其虽然逻辑清晰、复杂度低,但是灵活性较差。当节点发生变化时,会导致映射关系全部打乱,已经分配的数据也需要根据新的映射关系重新分配。那怎么样能改进基础轮询的痛点问题呢?本篇我们就带着这个问题一步一步来深入到本篇的主题,哈希分片的第二类方法:虚拟桶。.原创 2020-07-27 23:24:22 · 347 阅读 · 3 评论 -
大数据基础-3行代码实现最基本的路由分片(附代码)
01 前言在上文《大数据基础-原来这就是路由分片》中,我们简单介绍了什么是路由和分片、讲述了通用的路由分片模型,并介绍了路由分片的常用方法,包括哈希分片和范围分片。在哈希分片这类路由分片的解决方案中,有几种被广泛熟知和应用的实现方式: hash 取模法 虚拟桶 一致性hash 从本篇开始我们就详细的原理和实现方法来一一讲述。02 哈希取模大法—真香!我们首先详细说下第一种最为常见的方法hash取模法,这个名字可能有些同学比较陌生,我相信轮询(...原创 2020-07-19 23:19:35 · 403 阅读 · 5 评论 -
大数据基础-重新聊聊路由分片
01 前言时隔两年再次写作,心态上有了很多变化。在大数据领域探索了几年,确实也到了静下心来,沉淀一下的时候了。接下来的一系列文章也算是将现有理解和学习所得相结合的一些产物,绝对原创。本人文笔拙略,知识点尽量深入浅出,如有不当之处还请各位海涵并指出,同时欢迎技术交流和沟通,期待和大家共同成长。本文为先导文,分片路由实现、一致性等文章,请关注后续。02 什么是分片和路由大数据的相关背景不过多赘述,用两句话简单总结:数据规模爆炸式增长,单机的存储和计算性能受到极大的挑战。在如此的背...原创 2020-07-16 09:39:14 · 853 阅读 · 0 评论
分享