经典卷积神经网络---VGG16网络 VGG16网络结构及代码下图为VGG网络结构图,最常用的就是表中的D结构,16层结构(13层卷积+3层全连接层),卷积的stride为1,padding为1,maxpool的大小为2,stride为2(池化只改变图像的大小,不改变特征矩阵的深度)vgg网络结构可以看作两部分:特征提取网络(连接层之前)+分类网络(3层全连接层)...
经典卷积神经网络---AlexNet网络 AlexNet网络结构及代码AlexNet网络结构AlexNet网络构建代码模型构建import torch.nn as nnimport torchclass AlexNet(nn.Module): def __init__(self, num_classes=1000, init_weights=False): super(AlexNet, self).__init__() self.features = nn.Sequential(
Linux下载VOC数据集 Linux下载VOC数据集1、VOC数据集简介PASCAL VOC挑战赛 (The PASCAL Visual Object Classes )是一个世界级的计算机视觉挑战赛, PASCAL全称:Pattern Analysis, Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。http://host.robots.ox.ac.uk/pascal/VOC/简言之,VOC是 (Visual Object Classes)的简称,它是一
win安装cuda、cudnn检测是否安装成功 win安装cuda、cudnn检测是否安装成功1、win+R cmd进入终端激活创建的虚拟环境conda activate PyTorch(PyTorch) E:\Wan_ji_project\yolo3-pytorch-master>pythonPython 3.8.13 (default, Mar 28 2022, 06:59:08) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32Type "help", "copyri
关于cuda、cudnn环境配置 cuda、cudnn环境配置查看当前cuda版本在cmd命令行中输入nvidia-smi查看NVIDIA显卡driver version以及可安装的最高CUDA版本,如下图本电脑所示,driver version为431.40,可安装的最高CUDA版本为10.1.
深度学习必备核心算法通俗解读(一) 深度学习必备核心算法通俗解读机器学习流程:(1)数据获取(2)特征工程(3)建立模型(4)评估与应用深度学习的本质是提特征计算机视觉图像表示:计算机眼中的图像一张图像被表示成三位数组的形式,每个像素的值从0到255,例如3003003神经网络基础可以看到上面的结果不好,主要是权重参数的问题(权重参数随机初始化)损失函数:用来衡量模型的好坏归一化,计算损失(只关注正确类别)(预测值和真实值的差异)算出损失的目的是更新权重梯度下降:沿着梯度的反方向去更新(链式法则)
Linux基础知识 Linux基础最近在做课题,需要用到Linux系统,之前从未接触过,从现在开始学,突然想起一句话:只要你想学,什么时候都不算晚!这算是我学习Linux的一些笔记,也是记录一下我学习的过程~Linux简介(什么是Linux)它是一套开放源代码(在互联网上找到Linux系统的源代码,C语言写出的文件),可以自由传播(系统免费使用),支持多用户同时操作系统,多任务(可以同时运行多个程序)支持多CPU,多线程的操作系统。Linux主要用在服务器端Linu有着如下的关键特点:(1)开放源代码的程序软件,可
You probably need to get an updated matplotlibrc file from解决方法 You probably need to get an updated matplotlibrc file from解决方法在运行程序时出现了以下错误:显示需要升级matplotlibrc包,试过很多方法都不行,最后卸载了又重新安装了一下就可以了,具体方法是:(1)先卸载pip uninstall matplotlib(2)后安装python -m pip install -U matplotlib --prefer-binary -i https://pypi.tuna.tsinghua.
目标检测算法(传统&基于深度学习的) 目标检测算法最近在学目标检测各类算法,主要分为传统的目标检测方法和基于深度学习的目标检测算法,这里记录了一些基本的算法介绍。下图是目标检测算法的发展历程传统目标检测方法分三部分:区域选择–>特征提取–>分类器① VJ(Viola-Jones)Viola-Jones人脸检测算法可以说是非常经典的一个算法,所有从事人脸检测研究的人,都会熟悉了解这个算法,Viola-Jones算法在2001年的CVPR上提出,因为其高效而快速的检测即使到现在也依然被广泛使用。在无约束条件(如肤色分割)的情
数据集与算法评估 数据集与算法评估数据集Fashion-MNIST数据集1、FashionMNIST 是一个替代 MNIST 手写数字集 的图像数据集。它是由 Zalando旗下的研究部门提供,涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。2、FashionMNIST 的大小、格式和训练集/测试集划分与原始的MNIST 完全一致。60000/10000 的训练测试数据划分,28x28的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。CIFAR-10数据集1、 CI
torch学习笔记资料 pytorch深度学习:60分钟快速入门学习链接:https://www.jianshu.com/p/889dbc684622官方教程https://www.pytorch123.com/动手学深度学习https://zh-v2.d2l.ai/Deep learning with pytorch: https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf...
将py文件打包成exe可执行文件 将py文件打包成exe可执行文件将python程序打包成exe文件,这样下次使用的时候就不用打开python或者是编辑器了,可以直接点exe运行,是个比较实用的功能1、pyinstaller的安装(1)按住win+R键,输入cmd命令后回车,进入cmd命令行界面。(2)下载安装pyinstaller库,在cmd命令行输入pip install pyinstaller下载成功是这样的:(2)将py文件打包进入到需要转换的py文件目录下,输入命令行pyinstaller -F show_bo
车辆行人检测学习笔记 车辆行人检测学习笔记1、目标检测&常见检测网络目标检测:物体识别是要分辨出图片中有什么物体,输入是图片,输出是类别标签和概率。而目标检测不仅要检测图片中有什么物体,还要输出无异的外框(x,y,width,height)来定位物体的位置。object detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里以及是什么的整个流程问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态
目标检测篇之---YOLO系列 YOLO系列首先先说一下目标检测之one-stage和two-stage网络是什么意思?有什么区别?刚开始看目标检测的时候总能看见单阶段(one-stage)和两阶段(two-stage)目标检测网络,一开始不太懂,后来通过自己查资料,明白了一些,这里记录一下。**单阶段(one-stage):**目标检测经典算法比如YOlO,SSD这是单阶段(One-Stage)算法,单阶段算法主要思想就是用一个CNN网络直接预测不同目标的类别与位置。这类算法是速度快,但是准确性要低一些。简单介绍一些YOLO算法
目标检测篇之---RCNN, Fast RCNN, Faster RCNN RCNN, Fast RCNN, Faster RCNN刚涉足目标检测,向通过写博客来记录一下自己的学习过程,也希望可以给大家的学习带来一些帮助,今天的2021年的最后一天,希望看到我文章的朋友们,在新的一年里都能学有所成,学有所获!R-CNN算法最早在2013年被提出,它的出现打开了运用深度学习进行目标检测的大门,从此之后,目标检测的精准度与实时性被不断刷新。R-CNN系列算法自提出之际,就非常引人注目,以至于在之后的很多经典算法中,如SSD、YOLO系列、Mask R-CNN中都能看到它的影子。
python标准异常查询 python标准异常查询异常名称描述这是我在学习try except时总结的python的标准查询,方便自己以后查询,也希望能给大家带来一些帮助。BaseException 所有异常的基类SystemExit 解释器请求退出KeyboardInterrupt 用户中断执行(通常是输入^C)Exception 常规错误的基类S
log日志的使用 log日志的使用在开发过程中我们遇到bug是不可避免的,怎么能轻松找到bug?Python中有个logging模块可以记录着哪里错了,记录相关信息,帮我们轻松debug日志级别日志一共分成5个等级,从低到高分别是: 1. DEBUG 2. INFO 3. WARNING 4. ERROR 5. CRITICAL说明:DEBUG:详细的信息,通常只出现在诊断问题上INFO:确认一切按预期运行WARNING:一个迹象表明,一些意想不到的事情发生了,或表明一些问题在不久的将来(例