最新必读图神经网络论文

点击上方“深度学习技术前沿”,选择星标置顶,每天给你送干货

阅读大概需要6分钟

跟随小博主,每天进步一丢丢

本文转载自:深度学习与PyTorch

论文列表:

  1. Composition-based Multi-Relational Graph Convolutional Networks

  2. Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

  3. What graph neural networks cannot learn: depth vs width

  4. On the Equivalence between Node Embeddings and Structural Graph Representations

  5. Dynamically Pruned Message Passing Networks for Large-scale Knowledge Graph Reasoning

  6. Pruned Graph Scattering Transforms

  7. The Logical Expressiveness of Graph Neural Networks

  8. Efficient Probabilistic Logic Reasoning with Graph Neural Networks

  9. Automated Relational Meta-learning

  10. Curvature Graph Network

  11. DeepSphere: a graph-based spherical CNN

  12. Contrastive Learning of Structured World Models

  13. Geom-GCN: Geometric Graph Convolutional Networks

  14. Adaptive Structural Fingerprints for Graph Attention Networks

  15. Graph inference learning for semi-supervised classification

注:相关论文都可以直接在arxiv上,ICLR官网,Google上搜到。

1

Composition-based Multi-Relational Graph Convolutional Networks

基于关系的图卷积框架,用于多关系图。在本文中,作者设计了基于多重关系图的GCN并提出了CompGCN。与现有的多关系GCN相比,CompGCN充分利用知识图谱嵌入,学习了节点和关系的共同表示形式,目的是缓解过度参数化的问题。与现有工作相反,基向量仅定义用于初始化,而没有定义每个GCN层。作者还将提议的CompGCN与其他现有的GCN变体进行了比较,并总结了CompGCN与其他模型之间的关系。

2

Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

节点分类。随着层数达到无穷大,本文提供了图神经网络的理论分析。对于图卷积网络,它们将网络的表达能力与图谱联系起来。特别是对于Erdos-Renyi图,文章表明非常深的图会丢失信息,并基于此提出新的权重归一化方案。

3

What graph neural networks cannot learn: depth vs width

理论上研究了图神经网络(GNN)的能力范围。

4

On the Equivalence between Node Embeddings and Structural Graph Representations

节点嵌入与结构图表示的等价性。本文试图通过提供基于不变理论的统一理论框架,来阐明图/节点表示学习的一些概念。作者基于最小数量的需求定义节点嵌入和结构图表示,这些需求又被用于派生一些有用的属性并统一两个看似不同的概念。在此基础上,提出了一种新的图神经网络框架。在具有多个数据集的多个任务上进行的实验验证了以下主要主张:单节点嵌入不足以捕获图的结构表示。

5

Dynamically Pruned Message Passing Networks for Large-scale Knowledge Graph Reasoning

大规模的知识图谱,动态自适应地进行消息传递。本文提出了一种用于顺序推理任务的新神经网络架构。这个想法是有两个图神经网络(GNN),其中一个执行输入不变的全局消息传递,而另一个执行本地的依赖输入的消息传递。与输入有关的GNN采用流式注意机制。在一些知识完成数据集上的结果表明,所提出的方法优于最新方法。本文通过限制注意力范围来降低复杂性,非常有意思,而且也是大规模图所必需的。

6

Pruned Graph Scattering Transforms

一种带有修剪算法的图散射变换(GST),目的是减少运行时间和空间成本,提高对输入图信号扰动的鲁棒性。

7

The Logical Expressiveness of Graph Neural Networks

图神经网络的逻辑表达。本文在集合组合图神经网络(AC-GNN)和一阶谓词逻辑(FOC2)上的布尔节点分类器之间建立了新颖的理论联系。它表明,AC-GNN上的当前布尔节点分类器只能表示FOC2的一个子集,但是简单地将全局信息纳入扩展范围就可以将AC-GNN泛化为整个FOC2。

8

Efficient Probabilistic Logic Reasoning with Graph Neural Networks

变分EM框架中采用图神经网络,以进行有效的马尔可夫逻辑网络推理和学习。本文提出使用图神经网络(GNN)进行MLN推理。主要动机是传统MLN中的推理在计算上效率低下。这篇论文确切地说明了为什么会如此。引言中有一些暗示,即实体的数量是指数级的,而MLN子句中的指数与变量的数量有关。为了加快推理速度,作者建议改用GNN。由于GNN的表达能力有限,因此作者建议使用特定于实体的嵌入来提高表达能力。最终成分是均值场近似,有助于分解似然表达式。实验是在标准MLN基准(UW-CSE,Kinship,Cora)和链接预测任务上进行的。与HL-MRF相比,ExpressGNN的速度提高了5-10倍。在Cora上,HL-MRF内存不足。在链接预测任务上,ExpressGNN似乎可以达到更好的准确性,但是由于ExpressGNN无法学习规则并且作者先使用NeuralLP学习规则,然后再使用ExpressGNN学习参数和推理,所以这个结果很难理解。

9

Automated Relational Meta-learning

通过引入元知识图来解决元学习中的任务异构性问题。本文提出了通过提取跨任务关系并构造一个元知识图来处理元学习中的任务异质性,从而可以快速适应新任务。作者提出了一套全面的实验,这些实验显示了在2D回归任务和一系列“few-shot”分类任务上,性能均优于基线方法的情况。他们还进行了一些消融研究,并进行了其他分析/可视化以辅助解释。

10

Curvature Graph Network

曲率图网络。通过整合曲率信息(基于Ricci曲率的概念),本文提出了一种新颖的图卷积网络。实验结果表明,所提出的曲率图网络方法优于现有的图卷积算法。一个潜在的限制是计算Ricci曲率的计算成本,这在附录中进行了讨论。本公众号(深度学习与PyTorch)认为在图卷积网络中使用曲率的概念是一个非常新颖且promising的想法。

11

DeepSphere: a graph-based spherical CNN

DeepSphere:一种基于离散球体图形表示的方法.本文提出了一种通过基于图的离散化将卷积网络应用于球面数据的新颖方法.主要思想是将离散球体建模为连接像素的图形:两个像素之间的最短路径的长度是它们之间测地距离的近似值。

12

Contrastive Learning of Structured World Models

本文提出了一种在图神经网络之上应用对比学习的方法来学习场景的状态表示及其动作条件转换模型。结构化世界模型的构建和学习是一个有趣的研究领域,从原则上讲可以为预测模型提供更好的概括和可解释性。本文通过使用对比性的潜在空间克服了使用基于像素的损耗(常见的问题是重建较小但可能重要的物体)的问题。

13

Geom-GCN: Geometric Graph Convolutional Networks

本文介绍了一种新颖的GCN框架,其目的是克服现有GCN方法的弱点,即结构邻居信息的丢失和无法捕获远距离节点之间的重要依存关系。本文使用从节点到嵌入式空间的映射,并介绍了第二种邻域类型:嵌入式空间中的邻近度。在嵌入式空间中,定义了一组节点关系。对于每个节点v,本文采用两阶段卷积方案:1)对于每种邻域类型,将与v具有相同关系的节点合并;2)将生成的节点再次合并为新的特征向量。这种方法可以克服上述问题。实验表明,在大多数情况下,该方法的性能优于现有的GCN解决方案,有时差距很大。

14

Adaptive Structural Fingerprints for Graph Attention Networks

本文考虑了半监督学习环境下图节点分类的问题。在对节点进行分类时,决策是基于节点的特征以及其邻居的加权组合(其中权重是使用学习的注意力机制来计算的)。作者通过提出一种不同的方法来计算邻近节点上的注意力,从而扩展了最近的Graph Attention Networks(GAT)论文。这种新的关注机制不仅考虑了它们的特征相似性,而且还考虑了额外的结构信息,这也使他们的方法不仅可以参加直接邻居,而且可以参加k跳邻居。

15

Graph inference learning for semi-supervised classification

作者提出了一种图推理学习框架,以解决图中稀疏标记数据的问题。作者使用结构信息和节点属性定义结构关系,然后将其用于从已知标签中推断未知标签。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值