谷歌自动驾驶之父疯狂打Call, 无人车连续5小时不接管,又快又稳

本文揭秘滴滴自动驾驶系统如何在感知优化和行为决策上接近人类司机,展示了其在复杂场景下的稳健表现,包括逆光、夜间驾驶和密集车辆应对。通过多传感器融合、数据增强及专门的夜间模式,滴滴自动驾驶快速迭代,正朝着可靠性和商业化落地迈进。
摘要由CSDN通过智能技术生成

转载自:量子位

让谷歌“无人车之父”Sebastian Thrun都点赞的自动驾驶技术,是什么样的?

就像老司机的操作一样——又快又稳。

例如,面对走到机动车道上的行人,灵活操作避让,而不是小心翼翼地跟在后面:

懂得审时度势,在繁忙的商业区,看哪条道车流量比较少,就果断变道:

遇上从侧面突然冲出来的摩托,也能轻松避让,不慌不忙:

没错,这是滴滴正在测试的最新自动驾驶系统。坐在驾驶座上的安全员,全程双手离开方向盘。

上面还只是普通操作。

对于自动驾驶系统来说,更大的挑战在于逆光、夜间、大型车辆密集等场景。

这些情况下,传感器设备和自动驾驶系统往往会遭遇更为复杂的干扰。

那么滴滴的最新自动驾驶系统又表现如何?

占据镜头30%以上的大片光线,并不影响它判断红绿灯,依旧以正常速度继续行驶:

夜间进行无保护左转时,面对对向直行车辆,也会迅速判明情况,而不是一味等待:

路遇大车丝毫不惧,避让后方来车后,立刻选择变道超车:

甚至在连续5小时完全无人接管的情况下,从白天开到夜晚,也没有发生什么事故。

一年前,滴滴自动驾驶在上海开放公众测试时,还是个谨慎的新手司机。

如今,它已经变得更加游刃有余。

滴滴“老司机”,如何快速练成?

那么问题来了,滴滴的自动驾驶“新手司机”,在短短一年时间内,究竟是经历了怎样的修炼,才有了如今这样更加接近人类司机的表现呢?

感知优化

首先,还是要从感知技术的优化说起。

不妨先以路遇大型车辆这个场景来举例。

人类司机普遍有一个共识,开车上路,尽量避着大车走。其中一个重要原因是,大车自身的盲区多,也容易遮挡旁车的视线。

对于传感器而言,这样的挑战同样存在。

根据滴滴自动驾驶公司COO孟醒介绍,当RoboTaxi接近大车时,大车很可能会占满传感器的视野,导致传感器判断失真。

这种时候,来自摄像头或者激光雷达的单一信号就不够可靠了。滴滴的方案,就是将不同的传感器信号进行组合:

在识别出大型车辆之后,不是单纯依靠机器学习的方式去进行跟踪,还要加入点云分割等技术,进一步判断大车的边界距离,增强自动驾驶系统对于大车边界的理解。

另外一个对传感器考验不小的场景,是日落时分,司机们在路上经常遇见的逆光场景

在某些情况下,夕阳的光晕甚至会占据整个摄像头视野的30%以上。

意味着对比度低的情况下,有些人和物会在摄像头里“隐身”。

此前,特斯拉频频在白色大卡车上栽跟头,就可能与此有关。

为此,滴滴的工程师们在多传感器融合方案的基础上,还做了很多动态数据增强的工作,以确保在不同亮度条件下,都能准确识别和避让行人、汽车,以及其他路面上的物体。比如在对比度、白平衡比较差的情况下,去放大、加亮一些比较重要的场景。

前文也说到,滴滴这一次连续5个小时的show,从白天一直开到了黑夜。

事实上,即使对于人类司机而言,夜间开车的体验也与白天大相径庭。

为了更自如地在夜幕中行驶,滴滴的自动驾驶系统也被专门训练出了夜间模式

一方面,是有针对性地收集夜间数据,训练专门的夜间模型——尤其对于摄像头来说,夜晚采集到的数据与白天截然不同,能看到的人和物、能看清的距离、识别的角度都可能发生变化。

另一方面,同样是多传感器融合方案——融合3-4种平行的识别方式。并且,根据夜间交通参与者置信度的不同,工程师们也对不同识别方式的权重做了有针对性的调整。

值得一提的是,这样的夜间模式,会根据时间和外界亮度的情况,自动开启。

另外,针对视频中没有展示出来的天气变化的影响,孟醒也做了补充说明。

具体而言,滴滴自动驾驶把天气分为4档:

  • 第一档,光照条件良好的普通天气;

  • 第二档,稍微复杂的天气情况,如小到中雨;

  • 第三档,大到暴雨、大风等场景;

  • 第四档,沙尘暴、台风等极端天气。

孟醒表示,绝大多数的天气场景,如今滴滴自动驾驶系统都能覆盖得不错,这其中也引入了不少新的算法。

以大雨场景为例,滴滴引入了一种新的激光雷达信号处理方式:

利用激光雷达多次发射、多次回收信号,这样回收的回波中就包含了不同的形态和相位信息。对这样更丰富的信号进行处理,系统就能够判断出哪一些物体是可以穿透的,而哪一些又是不能穿透的。

至于沙尘暴、台风天这样不适宜出行的极端天气,孟醒坦言,这对于当下的自动驾驶技术研发来说不是最重要的场景。

原因很简单,想要常态化运营,可靠性是非常重要的。

基于这样的前提,滴滴当前需要重点捕捉的,是那些发生概率较高、影响较大的出行场景。

行为决策

说完了感知方面的提升,在行为决策方面,滴滴自动驾驶系统又是怎么向人类老司机靠拢的呢?

首先,在被投喂了大量人类司机驾驶车辆数据之后,滴滴自动驾驶系统对于交通参与者行为的预测准确性,有了明显的提升。

这也是为什么面对与其他车辆、行人的博弈,如今的滴滴“老司机”显得更为自信。

孟醒谈到,对于RoboTaxi而言,可靠性是最重要的,也就是说,车一定不能出事故。而“事故”不仅仅是指安全事故,也包括体验上的事故,如车辆频繁急刹,让乘客觉得不舒服。

更进一步,还有效率层面的“事故”——自动驾驶车辆不能因为一个复杂的场景,一直卡死不动。

而说到可靠性,滴滴自动驾驶系统还有一项“绝招”,就是“安全模式”。

可以看到,在下面这样一个幼儿园附近的场景下,道路两旁临时停放了许多等待接小朋友放学的车辆,同时还会有大量行人、电动车出现。

这些动态因素的变化、叠加,就对自动驾驶的预测、决策和规划提出了更高的要求。

对此,滴滴自动驾驶系统配备了风险评估模式。

当风险指数(Risk Potential)上升时,安全模式就会被启动,RoboTaxi就会以更谨慎的方式去驾驶车辆,提升安全系数。

滴滴“老司机”,如何快速迭代?

去年6月才刚刚面向公众推出载人测试服务,短时间内又有了明显的进步,滴滴的自动驾驶技术,进展不可谓不快。

但其实也并不出人意料。

毕竟滴滴自动驾驶是“富二代”。

自动驾驶技术上,滴滴具有独特的优势——有目标,有路径,有资源,还加上一点国内环境的条件。

首先,有目标。

相比于其他自动驾驶车企,滴滴从一开始就看到了自己的“终点”——RoboTaxi。

没错,并非像Waymo等公司一样纯技术驱动,而是从落地场景出发,思考所需技术。

至于技术出来后如何运营?不用考虑。

滴滴的网约车平台,已经提供了自动驾驶商业化落地的方式,例如,自动驾驶与有人驾驶同时派单,根据路况、天气和路径决定派单模式,同时为用户提供服务等。

其次,相比于如Uber一类的网约车平台,滴滴在自动驾驶上的技术路径又更加明确。

例如,如何使用从网约车平台采集的真实场景数据。

背靠滴滴平台的自动驾驶,每天订单数量平均达数千万,加之司机的行驶轨迹和安装在交通工具上的桔视设备,全年可以采集近1000亿公里的真实场景数据

凭借这些真实数据和仿真系统数据,滴滴自动驾驶能形成经营、安全和技术三张地图,可以在10秒内筛选出最具有测试价值的地点。

此外,滴滴还基于从桔视设备上采集的数据,为网约车司机开发出了智能化驾驶安全系统:

不仅能对车外的前向碰撞、前车急刹、车道偏离等场景及时预警,还能在司机进入疲劳状态前,通过语音提醒司机注意行车通风、及时休息、避免疲劳驾驶,让出行更安全。

这个名为“基于桔视的AIoT智能驾驶感知平台”的项目,已经在今年4月10日,获评吴文俊人工智能科技进步奖“企业技术创新工程项目”。

对于滴滴而言,目标和路径都很明确,“无非是怎么执行的问题”;但其他企业,就不一定有这么明确的方向了。

除此之外,滴滴的自动驾驶资源,也确实丰富——人才、资金……都有足够的底气。

孟醒在采访中表示,目前团队已经超过500人,而支撑研发和技术迭代,资金也比较充裕。

加之国内也高度重视V2X(车联网)技术的推进工作,各地都在建成车路协同自动驾驶的相关设备和道路,又为实现真正的自动驾驶,进一步创造了条件。

而在这次“5小时无接管”的视频中,也包含了支持V2X的部分道路测试。

天时地利人和,滴滴都有了。

滴滴自动驾驶,下一步往哪开?

滴滴自动驾驶,自2016年组建团队以来,已有5年研发历史。

起步并非最早,发展速度却绝对算是最快之一:

2019年8月,滴滴官宣将自动驾驶业务升级为子公司,运营和研发架构一应俱全;

2020年6月,RoboTaxi项目落地上海,正式开放公众自动驾驶测试体验;

2020年11月,滴滴与北京汽车集团合作的新一代L4自动驾驶车亮相;

同月,滴滴自动驾驶成为首家获得上海三个测试区牌照企业,总里程达530.57公里;

现在,滴滴又发布了全球首个5小时连续无监管路测视频,测试车辆在环境感知、行为决策、运动规划与控制等方面的表现,连“无人车之父”都给予了极高的评价……

所以,滴滴自动驾驶,下一步会往哪开?

据孟醒透露,在技术路径上,滴滴自动驾驶将会经历三个阶段,包括性能测试可靠性落地

在进行性能测试时,开发团队会迅速搭建一个车辆模型,并用各种场景去挑战它,理解它的性能边界,即目前研究技术所能达到的最高性能。

接下来,就是提升自动驾驶系统的可靠性了,这里面的核心,是求稳。只有靠真实数据的迭代,才能检验出系统的稳定性来。

最后,才到量产落地的环节。

对于滴滴而言,这几个阶段会有重叠的部分,因此更多时候会并行进行,但目前的研究重心,仍然放在“可靠性”这一阶段上。

而这一阶段,也是滴滴最有信心与其他车企拉开差距的一环。

目前,滴滴尚未透露具体落地时间,表示商用化仍然取决于硬件成本、车企平台、政策体系等因素,“还需要与行业一同合作实现”。

但能够确定的是,滴滴自动驾驶技术研发,未来将仍然聚焦于网约车场景。

至于滴滴是否会进军自动驾驶卡车赛道,孟醒只表示:

目前,更多是在技术层面上保持关注。

在滴滴自动驾驶上一轮融资后,我们说滴滴手握中国最好的自动驾驶资源,起点和势头会有所不同。而且在中国搞自动驾驶,没有人不羡慕滴滴。

而现在技术上的快速迭代和进展,也是对这种资源优势的最好印证。

欢迎添加群助手微信,邀请您加入高手如云-自动驾驶技术群!

???? 长按识别添加,邀请您进群!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值