这个模型,让前特斯拉AI总监Andrej Karpathy沉迷了整整3天!

来源:新智元

最近,一个叫Xander Steenbrugge的AI研究员兼数码艺术家,上传了一段非常震撼的视频《跨越时间之旅》。

地球上的生物大进化,从原始海洋起始,到远古蜥蜴、恐龙、哺乳动物,再到猴子、猩猩、猿人、智人……最后出现了科幻中的未来世界。

而Steenbrugge也激动地评论道:我们正在跨越一个门槛,生成式人工智能不再只是关于新颖的美学,而是演变成了一个惊人的工具,可以构建强大的、以人为中心的叙事。

Steenbrugge表示,这个视频用了36个连续的短语。为了找到可能的最佳顺序,他尝试了超过一千种不同的提示和种子,并在代码中应用了许多「提示工程」的技巧,来弄清楚到底哪些是有效的,哪些是无效的。

ac82db3f877c370f614218dcbda95324.png

前特斯拉AI高级总监Andrej Karpathy看完后大受震撼,也忍不住手痒尝试了一波。

「超现实的蒸汽朋克神经网络机器,呈大脑形状,放置在一个基座上,上面布满了齿轮制成的神经元」,在输入这段文字后,他的大作也生成了。

2分钟的视频(在A100上渲染约1小时),是通过在随机噪声输入的模型之间平滑插值生成的。

这个名为Stable Diffusion的模型,采用的是在两个句子的意义之间「插值」的方式。插入的地方是语义的间隔,而不是视觉的空格,因此,它极大地改变了故事叙述的方式。

而这,仅仅是由生成式人工智能驱动的数字内容创作革命的开始。

‍Stable Diffusion:开源模型的里程碑

从2021年初以来,可以从文本描述生成图像的人工智能一直在快速发展。当时,OpenAI用DALL-E 1和CLIP展示了令人印象深刻的结果。

在2022年,OpenAI发布了令人印象深刻的DALL-E 2,谷歌展示了Imagen和Parti,Midjourney推出了公测版,Craiyon创作的AI图像也遍布各种社交媒体。

而就现在最近,Stability AI又发布了一个全新的模型——Stable Diffusion。

3007916205be60ddd151f131905edd88.png

不过,与DALL-E 2不同的是,Stable Diffusion可以生成OpenAI禁止的各种知名人士。

虽然像是Midjourney、Pixelz.ai等等这些系统也可以做到,但它们生成的质量,还远没有达到能与Stable Diffusion相媲美的程度,而且还都不是开源的。

现在有请我们的老朋友马斯克,表演一个秒变「黑寡妇」(斯嘉丽·约翰逊)。

bcb23671485edd012f71630d5a2f8986.gif

显然,作为主要开发者的Stability AI,希望不止一家公司或团队能够训练Stable Diffusion的变体。

比如,你是一个没有海量的GPU算力的研究人员。不用担心,Stable Diffusion即将能够在一块仅有5.1GB VRAM的显卡上运行。

再比如,你是一个平时使用配备苹果M1芯片的MacBook的爱好者,Stable Diffusion也可以运行。只不过,这时图像生成的时间就要从几秒钟变成几分钟了。

如此看来,多模态模型正沿着以前大型语言模型所走的道路前进:远离单一的供应商,并通过开放源码广泛提供众多的替代方案。

0ef22b1a684c482780bb97bf0ef0d712.png

此外,Runway已经在研究如何基于Stable Diffusion来实现文本到视频的编辑了。

一句话,让网球场变沙滩;

66db60890d1be14a5e52f40227258fad.gif

不管电闪雷鸣,还是风和日丽;

ab9fe31c77dc028564a44c5fa1f356f3.gif

不管是在月球,还是在火星之上;

9124c42e8ace1b8f052fc8c8476c8f0b.gif

都无法阻止我打网球……

用计算来加速基础AI的开源

在测试阶段之后,Stable Diffusion就会免费,代码和经过训练的模型将作为开源发布。还将有一个带有Web界面的托管版本,供用户测试系统。

Stable Diffusion 是 Stability AI、RunwayML、LMU Munich、EleutherAI 和 LAION 的研究人员合作的结果。EleutherAI以其开源语言模型GPT-J-6B 和GPT-NeoX-20B等而闻名。

非营利组织 LAION(大规模人工智能开放网络)为训练数据提供了开源LAION 5B数据集,该团队在初始测试阶段根据人工反馈对其进行过滤,以创建最终的LAION-Aesthetics训练数据集。

Runway的Patrick Esser和LMU 慕尼黑的Robin Rombach领导了这个项目,他们在海德堡大学 CompVis小组的研究奠定了这个项目的基础。在海德堡大学,他们创建了广泛使用的VQGAN和Latent Diffusion。这两个模型再加上OpenAI和Google Brain的成果,使Stable Diffusion得以实现。

Stability AI成立于2020年,背后的出资人是数学家、计算机科学家Emad Mostaque。他曾在各种对冲基金担任分析师。

凭借Stability AI和他的私人财富,Mostaque希望能够培育一个开源AI研究社区。他的创业公司之前就支持创建「LAION 5B」数据集。为了训练Stable Diffusion的模型,Stability AI为服务器提供了4,000个Nvidia A100 GPU。

「除了我们的75名员工之外,没有任何其他人拥有决策权——无论是亿万富翁、大型基金,还是政府,我们是完全独立的。」Mostaque说。「我们计划使用我们的计算来加速基础人工智能的开源。」

网友都玩儿疯了

除了开头地两段视频,也有网友用Stable Diffusion生成一段衰老的动画。

他表示,制作过程中在长提示中改变一个词,比在短提示中有更微妙的效果。此外,使用描述,如老,中年,幼儿,通常比说明具体的年龄,如10岁,40岁,80岁效果更好。

ee05a7a71f96f153e5d1c53df6986ad4.gif

此外,还有各种梦幻的静态图片。

「情人」

eb9448852b15b0f4646c436bd85b3112.png

「狮子」

c046f78acd2ae11a59b9b31188eb9744.jpeg

Leyendecker和Maxence笔下的「黑魂」

48772e02a1baef46d536604551095b68.jpeg

「赛博京剧」

8c6559afffbcfa8ddbd560cef7c61f17.png

彩蛋

感受一下特斯拉的前人工智能和自动驾驶视觉总监Andrej Karpathy被虐的心路历程。

e2c5d0686a4765a643d7ebc77961833e.jpeg

看完大神制作的视频之后,Karpathy非常激动。

然后一波操作搞出来的成果,放进幼儿园小班里都毫无违和感。绝望的Karpathy直呼想要请一位「提示工程师」替自己创作。

最后Karpathy终于悟了,创作出了他非常满意的新作——蒸汽朋克人工神经网络机器,和蓝莓意大利面。

参考资料:

https://stability.ai/blog/stable-diffusion-announcement

推荐阅读

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

226efa0b2f6699d684bf433e80c17142.jpeg

👆 长按识别,邀请您进群!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值