给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
进阶:
一个直观的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。
一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
你能想出一个仅使用常量空间的解决方案吗?
示例 1:

输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]
示例 2:

输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]
提示:
- m == matrix.length
- n == matrix[0].length
- 1 <= m, n <= 200
- -231 <= matrix[i][j] <= 231 - 1
题解:
class Solution {
public void setZeroes(int[][] matrix) {
List<Integer>list=new ArrayList<>();
List<Integer>list0=new ArrayList<>();
int m=matrix.length;
int n=matrix[0].length;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(matrix[i][j]==0){
list0.add(i);
list.add(j);
}
}
}
for (int i : list0) {
Arrays.fill(matrix[i], 0);
}
for (int i : list) {
for(int a=0;a<m;a++)
matrix[a][i]=0;
}
}
}
Accepted
- 164/164 cases passed (1 ms)
- Your runtime beats 99.93 % of java submissions
- Your memory usage beats 96.16 % of java submissions (39.7 MB)


被折叠的 条评论
为什么被折叠?



