第三章_数据库结构设计
考点分析
在考试中一般情况下会出现在选择题和设计题(ER图表示,关系模型转化)
常考知识点有:
1.掌握数据建模方法中ER、IDEF1X系列的建模方法。
2.掌握数据库逻辑设计–ER图向关系模式转换方法
3.掌握数据库物理设计中物理结构、索引的分类、建立索引的原则。
考点1:数据库概念设计
数据库概念设计主要解决数据需求,即如何准确地理解数据需求,真实地把应用领域中要处理的数据组织,定义描述清楚,以支持数据库设计后续阶段的工作,
1、数据库概念设计阶段的目标
定义和描述应用领域设计的数据范围
获取应用领域或问题域的信息模型
描述数据的属性特征
描述数据之间的关系
定义和描述数据的约束
说明数据的安全性要求
支持用户的各种数据处理需求
保证信息模型能转化成数据库的逻辑结构(即数据库模式),同时也便于为用户理解。
2.概念设计的依据及过程
依据:
需求分析阶段的文档,包括需求说明书、功能模型(数据流程图或IDEF0图)以及在需求阶段收集到的应用领域或问题域中的各类报表等。
过程:
(1)明确建模目标(模型覆盖范围)
(2)定义实体集(自底向上标识和定义实体集)
(3)定义联系(实体间关联关系)
(4)建立信息模型(构造ER模型)
(5)确定实体集属性(属性描述一个实体集的特征或性质)
(6)对信息模型进行集成与优化(检查和消除命名不一致、结构不一致等)
概念设计是DB设计的核心环节。概念数据模型是对现实世界的抽象和模拟。
3.数据建模方法
ER模型用简单的图形直观地抽象出现现实世界中客观对象的属性特征及其关系。
数据建模方法的共同特点是:
1.能够真实客观地描述现实世界中的数据及数据之间的关系。
2.组成模型的概念少,语义清楚,容易理解。
3.不同概念的语义不重叠,概念无多义性。
4.用图形方式描述数据,数据直观易懂,有利于数据库设计者和用户交流。
5.这种数据模型容易转换成数据库逻辑设计阶段的数据结构。
ER建模方法:
实体联系(ER)方法面向数据存储需求建模,将现实世界中需要处理的数据抽象组织成某种信息结构。这种结构不依赖于具体的计算机系统,仅从存储需求描述数据的属性特征及数据之间的关系。
与ER模型有关的基本概念:
实体(Entity)或实例(Instance)
客观存在并可相互区分的事物叫实体。
如学生张三、工人李四、计算机系、数据库概论。
实体集(Entity Set)
同型实体的集合称为实体集。
如全体学生。
属性(Attribute)
实体所具有的某一特性。一个实体可以由若干个属性来刻画。每个属性的取值范围称为域。
例如,学生可由学号、姓名、年龄、系、年级等组成。
码(Key):
实体集中唯一标识每一个实体的属性或属性组合。
用来区别同一实体集中的不同实体的称作主码。
一个实体集中任意两个实体在主码上的取值不能相同。
如学号是学生实体的主码。
联系(Relationship)
描述实体之间的相互关系。
如学生与老师间的授课关系,学生与学生间有班长关系。
联系也可以有属性,如学生与课程之间有选课联系,每个选课联系都有一个成绩作为其属性。
同类联系的集合称为联系集。
实体间的联系有三类:
实体之间的联系的数量,即一个实体通过一个联系集能与另一实体集相关联的实体的数目。
一对一联系(1:1)
如:“系”与“系主任”(一个系只有一个系主任,一个系主任只负责管理一个系)
一对多联系(1:n )
如:“系”与“学生”(一个系招收若干学生,一个学生只属于一个系)
多对多联系(m:n)
如:“学生”与“课程”(一名学生可选修多门课程,每门课程可被多名学生选修)


IDEF1X建模方法
IDEFX 侧重分析、抽象和概括应用领域中的数据需求,被称为数据建模方法。
IDEF1X的建模元素:实体集、联系。
实体集

本文深入讲解数据库概念设计的ER与IDEF1X方法,逻辑设计中ER图到关系模式的转换,以及物理设计中索引、文件组织和数据分布的关键要点。涵盖了数据库结构设计的核心技术和实践应用。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=123519370&d=1&t=3&u=3db981834572471dad245a9c3e645cff)
7844

被折叠的 条评论
为什么被折叠?



