Flink SQL 如何避免 JDBC Connector 维表出现 Finished 状态

背景

JDBC Connector 使得关系型数据库( Mysql、PostgreSQL)可以作为 Flink 主流的维表,如下图:
在这里插入图片描述

但如果使用不当会出现 JDBC Connector Source 在运行一段时间之后出现 Finished 状态,导致 checkpoint 不能正常触发,如下日志:

2022-02-17 16:16:15.707 INFO [60] org.apache.flink.runtime.checkpoint.CheckpointCoordinator - Checkpoint triggering task Source: JDBCTableSource(goods_no, supply_id) -> SourceConversion(table=[default_catalog.default_database.dim_goods_lib, source: [JDBCTableSource(goods_no, supply_id)]], fields=[goods_no, supply_id]) (1/4) of job 5e7450a604c232eb96406bd493421fe4 is not in state RUNNING but FINISHED instead. Aborting checkpoint.

解决

假如 MySQL 有这张维表 goods_lib,在 Flink SQL 创建该表的映射:

create table dim_goods_lib(goods_no bigint, supply_id bigint)
with(
    'connector.type' = 'jdbc',
    'connector.url' = 'jdbc:mysql://localhost:3306/test?serverTimezone=UTC',
    'connector.table' = 'fmys_goods_lib',
    'connector.driver' = 'com.mysql.jdbc.Driver',
    'connector.username' = 'test',
    'connector.password' = 'test',
    'connector.lookup.cache.max-rows' = '50000',
    'connector.lookup.cache.ttl' = '60s'
)

使用 JOIN 链接维表, SQL 需使用 FOR SYSTEM_TIME AS OF
``

select 
distinct
b.supply_id
,1
,a.planinfoid
from
(
    select 
    goods.goods_no
    ,goods_info.planinfoid
    from
    kafka_goods goods  
    join kafka_goods_info goods_info on goods.planinfoid = goods_info.planinfoid 
    where goods_info.status  = 0
) a
join dim_goods_lib FOR SYSTEM_TIME AS OF PROCTIME() as b on a.goods_no = b.goods_no

加上 FOR SYSTEM_TIME AS OF PROCTIME(),表示JOIN维表当前时刻所看到的每条数据。

如果没有这些关键词,Flink 只会从 MySQL 中拉一次数据便把 JDBC Source 的状态置为 Finished。

您好!对于 Flink SQL 中的一张的全量 Join,可以使用 Flink 的 Table API 或 SQL 语句来实现。下面是使用 Table API 的示例代码: ```java // 导入所需的类 import org.apache.flink.api.common.typeinfo.Types; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.table.api.EnvironmentSettings; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.TableEnvironment; import org.apache.flink.table.functions.TableFunction; import org.apache.flink.table.types.DataType; import org.apache.flink.table.types.logical.LogicalType; import org.apache.flink.types.Row; // 创建一个函数 class DimensionTableFunction extends TableFunction<Row> { private final Tuple2<String, Integer>[] dimensionData = new Tuple2[]{ Tuple2.of("度1", 1), Tuple2.of("度2", 2), Tuple2.of("度3", 3) }; public void eval(String key) { for (Tuple2<String, Integer> data : dimensionData) { if (data.f0.equals(key)) { collect(Row.of(data.f0, data.f1)); } } } @Override public DataType getResultType(Object[] arguments, LogicalType[] argumentLogicalTypes) { return DataTypes.ROW( DataTypes.FIELD("dimension_key", Types.STRING), DataTypes.FIELD("dimension_value", Types.INT) ).getLogicalType(); } } // 创建 Flink 执行环境和 TableEnvironment EnvironmentSettings settings = EnvironmentSettings.newInstance().inBatchMode().build(); TableEnvironment tEnv = TableEnvironment.create(settings); // 注册一张主 Table mainTable = tEnv.fromValues( DataTypes.ROW( DataTypes.FIELD("main_key", Types.STRING), DataTypes.FIELD("main_value", Types.INT) ), Row.of("度1", 10), Row.of("度2", 20), Row.of("度3", 30) ).as("main_table"); // 注册函数 tEnv.registerFunction("dimension_table", new DimensionTableFunction()); // 使用 SQL 进行全量 Join Table result = tEnv.sqlQuery( "SELECT m.main_key, m.main_value, d.dimension_key, d.dimension_value " + "FROM main_table AS m " + "LEFT JOIN LATERAL TABLE(dimension_table(m.main_key)) AS d " + "ON TRUE" ); // 打印结果 tEnv.toRetractStream(result, Row.class).print(); // 执行作业 tEnv.execute("Full Join Example"); ``` 这个示例代码中,我们首先创建了一个函数 `DimensionTableFunction`,然后使用 Flink 的 Table API 注册了一张主 `main_table` 和函数 `dimension_table`。最后,使用 SQL 语句进行全量 Join 操作,并将结果打印出来。您可以根据实际情况修改示例中的数据和字段名。希望对您有所帮助!如果有任何疑问,请随时提问。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修破立生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值