C++智能指针 在C++中,智能指针是管理动态分配内存的工具,它们自动处理内存的分配和释放,帮助避免内存泄漏。C++标准库提供了几种智能指针,包括。允许多个智能指针共享同一个资源的所有权。资源会在最后一个指向它的。一起使用,用来避免循环引用的问题,并检测资源是否已经被释放。是一种不增加它所指向的对象的引用计数的智能指针,通常与。拥有独占所有权的指针,同一时间内只能有一个。离开作用域时,它所指向的资源会被自动删除。
ubuntu语音库ALSA报错具体原因 后来才知道这不是报错,具体解释见https://blog.yjl.im/2012/11/pyaudio-portaudio-and-alsa-messages.html#4529-who-actually-blah-those。时总会有下面的提示,不胜其烦。在ubuntu中使用。
ubuntu中安装pycharm并设置图标 然后右击桌面图标,选择“属性”,确保“类型”设置为“应用程序”,就可以正常打开了。:从JetBrains官网下载PyCharm的tar.gz文件。为PyCharm实际的安装路径。应替换为实际的下载文件名。:保存文件,打开命令行输入。:进入解压后的目录下的。:在桌面上创建一个名为。:使用文本编辑器编辑。
Ubuntu bash按Table不联想 文件中有启用bash补全的配置,并且没有被注释掉。首先,需要确保这个包已经安装。查找如下行并确保它们是启用状态(即前面没有。安装完成后,可能需要重启终端或执行。
手眼标定笔记 眼在手外(eye to hand):相机固定在机械臂以外的地方,主要标定相机和基底坐标系的转换矩阵。眼在手上(eye in hand):相机固定在机械臂末端,主要标定相机和机械臂末端的转换矩阵。endbaseR_{end}^{base}RendbaseR:机械臂末端坐标系到机械臂基底坐标系的旋转矩阵endbaseT_{end}^{base}TendbaseT:机械臂末端坐标系到机械臂基底坐标系的平移矩阵endbaseM=[endbaseRendbaseT01]_{end}^{base}M = \begi
tcp粘包现象和解决方式 TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包更有效的发给对方,使用了优化算法(Nagle算法),这样,接收端,就难于分辨出来了,必须提供科学的拆包机制,即面向流的通信是无消息保护边界的。,都不是直接接收对方的数据,而是操作自己的操作系统内存。报头(数据的长度(total_size))基于tcp协议发送/接收。
conda创建GPU版本Pytorch环境 这个后缀的意思是,只从pytorch官网下载,速度会非常慢 😩。以下命令行代码的操作,均是在AnacondaPrompt中。GPU版本pytorch环境安装成功!
基于opencv和np.repeat的图像马赛克和人脸检测马赛克(python源码) 原图像读取:马赛克实现方式1: 原图像 -> resize缩小 -> resize放大还原为原来的尺寸效果:效果:效果:效果:效果:
【matlab深度学习工具箱】classificationLayer参数详解 描述分类层计算具有互斥类的分类和加权分类任务的交叉熵损失。该层根据前一层的输出大小推断类的数量。例如,要指定网络的类 K 的数量,可以在分类图层之前包括输出大小为 K 的全连接图层和 softmax 图层。创建分类图层。例子创建分类图层复制命令复制代码创建名为 的分类图层。在数组中包括分类输出图层。创建加权分类图层复制命令复制代码为名称分别为“cat”、“dog”和“fish”的三个类创建加权分类图层,权重分别为 0.7、0.2 和 0.1。在图层数组中包括加权分类输出图层。输入参数名称
【matlab神经网络工具箱】predict()报错:No valid system or dataset was specified. 报错信息 predict的第一个参数是模型的网络,数据类型应该是 由这种变量接收的方式加载进内存空间的是一个结构体,其中包含的net才是需要的参数。 所以在函数中应该把改为
【matlab深度学习工具箱】convolution2dLayer参数详解 2-D 卷积层2-D 卷积层将滑动卷积滤波器应用于 2-D 输入。该层通过沿输入方向垂直和水平移动滤波器并计算权重和输入的点积,然后添加偏置项来卷积输入。描述 创建一个 2-D 卷积层,并设置 和 属性。名称-值对参数使用逗号分隔的名称-值对参数指定要沿图层输入边缘添加的填充的大小,或设置 参数和初始化、学习速率和正则化以及属性。将名称括在单引号中。示例:创建了一个2-D卷积层,其中包含16个大小的过滤器和的填充。在训练时,软件计算并设置填充的大小,以便图层输出具有与输入相同的大小。输入边填充,指定
【python爬虫学习记录 持续更新】多线程多进程,带线程池爬取实例 from concurrent.futures import ThreadPoolExecutorimport requestsfrom lxml import etreeimport timefrom bs4 import BeautifulSoup as bsimport os
【python爬虫学习记录 持续更新】数据解析方式 <re> <Beautiful Soup> <Xpath> Regular Expression:一种使用表达式的方式对字符串进行匹配的语法规则。抓取到的网页源代码本质上就是一个超长的字符串,想从里面提取内容,用正则表达式再适合不过了。正则的优点:速度快,效率高,准确性高。正则的缺点:新手上手难度高语法:使用元字符进行排列组合用来匹配字符串。在线测试正则表达式量词:控制前面的元字符出现的次数贪婪匹配和惰性匹配爬虫用的最多的就是惰性匹配。re模块中我们需要记住的几个功能,匹配字符串中所有符合正则的内容[返回列表],全文匹配,找到一个结果就
【python爬虫学习记录 持续更新】http协议 http协议把一条消息分为三大块内容,无论是请求还是响应都是三块内容请求:响应:在后面我们写爬虫的时候要格外注意请求头和响应头,这两个地方一般都隐含着一些比较重要的内容请求头中最常见的一些重要内容(爬虫需要):响应头中一些重要的内容:请求方式:GET:显式提交POST:隐式提交...