车道线后处理之RANSAC鲁棒估计

本文介绍了RANSAC(随机样本共识)鲁棒算法在处理含有野值的数据集时如何进行车道线拟合。内容包括距离阈值的选择、采样次数的确定、一致集大小的判断以及鲁棒最大似然估计。还提到了其他鲁棒算法如最小中值平方估计(LMS)及其优缺点,并讨论了在大曲率车道线拟合和野值处理中的挑战。
摘要由CSDN通过智能技术生成
  • RANSAC鲁棒算法

RANSAC过程与通常的光滑技术相反:不是用尽可能多的点去获得一个初始解并在以后消除无效点,RANSAC是使用满足可行条件的尽量少的初始数据集并在可能时用一致性数据集扩大它。

目标:一个模型与一个含有野值的数据集S的鲁棒拟合
算法:

  1. 随机地从S中选择s个数据点组成的一个样本作为模型的一个示例;(备注:s的个数需要大于模型最小的个数即可,比如模型是直线则用两个点+,模型为平面则用三个点+……)
  2. 确定在模型距离阈值t内的数据点集Si,Si,称为采样的一致集并定义S的内点
  3. 如果Si的大小(内点数目)大于某个阈值T,用Si的所有重估计模型并结束
  4. 如果si的大小小于阈值T,则重复上面的过程
  5. 经过N次试验选择最大一致集Si,用Si的所有重估计模型。

三个问题:
以直线拟合为例:

  • 什么距离阈值,如何选取?
    目的是希望选择的距离阈值t使点为内点的概率是 α \alpha α,该计算需要直到内点到模型的距离的概率分布,在实际中距离阈值通常靠经验选取,但是如果假定数据点的误差是服从零均值、标准差为 σ \sigma σ的高斯分布,在此中情况就可以利用距离的平方和服从自由度为m的卡方分布确定,m为模型余维度,点的内点概率为 α = 0.95 \alpha=0.95 α=0.95时,距离阈值 t 2 = F m − 1 ( α ) σ 2 t^2=F_m^{-1}(\alpha)\sigma^2 t2=Fm1(α)σ2

  • 采样多少次为宜?
    保证由s个点组成的随机样中至少有一次没有野值的概率为p,通常p取0.99,假定 ω \omega

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值