动态规划-最长子序列LCS

#include <iostream>
#include <string>
using namespace std;
/*
    最长公共子序列LCS
    证明最优子结构
    input: Xm,Yn
    output: Zk
    1.分析最优解的结构,即原问题的最优解包含了子问题的最优解
        设X和Y的LCS为Z,则最优解max为Z
        子问题分三种情况
                        1)若Xm=Yn,则Zk=Xm=Yn,Zk-1是Xm-1和Yn-1的LCS
                            反证:假设Xm-1和Yn-1的LCS不是Zk-1而是W,那么Zk-1<W,Zk-1∪{Zk}<Zw∪{Zk},与Zk是最优解矛盾
                        2)若Xm!=Yn,且Xm!=Zk,则Z是Xm-1和Yn的LCS。
                            反证:假设Xm-1和Y的LCS不是Zk-1,与最优解Zk矛盾
                        3)若Xm!=Yn,且Yn!=Zk,则Z是Xm和Yn-1的LCS。
                            反证: 同(2)
    2.状态转移方程(state transition)
            C(i,j)=  (1) C(i-1,j-1)+1 Xi=Yj
                     (2) max{C(i-1,j),C(i,j-1)} Xi!=Yj
            //初始状态
            第一行,第一列都为0,当做辅助空间,方便存储

    求的是结果C(m,n),从低到上,用二维DP保存结果
*/

int LCS(string s1,string s2){
    int m = s1.size(),n=s2.size();
    int dp[m+1][n+1];
    //初始化
    int i,j;
    for(i=0;i<=m;i++)
        dp[i][0] = 0;
    for(j=0;j<=n;j++)
        dp[0][j] = 0;

    for(int i=1;i<=m;i++){
        for(int j=1;j<=n;j++){
            if(s1[i-1]==s2[j-1]){ //Xi=Yj
                dp[i][j] = dp[i-1][j-1] +1;
            }else{
                dp[i][j] = dp[i-1][j]>dp[i][j-1]?dp[i-1][j]:dp[i][j-1]; //取max放进去
            }
        }
    }
    for(int i=0;i<=m;i++){
        for(int j=0;j<=n;j++){
            cout<<dp[i][j]<<" ";
        }
        cout<<endl;
    }
    //空间可以压缩 从m行压缩到两行

    //打印序列,深度优先直接追溯回去
    //可以搞个栈或者单链表的头插法
    i=m,j=n;
    string Stack;
    while(dp[i][j]!=0){
        if(dp[i][j]==dp[i-1][j]){//往上走
            i--;
        }else if(dp[i][j]==dp[i][j-1]){ //上走不了往左走
            j--;
        }else{ //两边都走不了
            Stack.push_back(s1[i-1]);
            i--,j--;
        }
    }
    for(i=Stack.size()-1;i>=0;i--){
        cout<<Stack[i];
    }
}
int main(){
    string s1 = "qwfhkl";
    string s2 = "wrhiq";
    LCS(s1,s2);
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁憨憨程序员

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值