81.门控循环单元(GRU)以及代码实现

文章介绍了在RNN中处理长序列时遇到的问题,以及GRU如何通过更新门和重置门解决这个问题。GRU通过这两个门控制隐藏状态的更新,平衡当前输入和历史信息的影响。文章还提供了GRU的代码实现,并提到了在实际应用中GRU的稳定性和效率优势。
摘要由CSDN通过智能技术生成

1. 关注一个序列

做RNN的时候,处理不了太长的序列,因为把整个序列信息全部放在隐藏状态中,所有东西都放进去,当时间步很长的话,隐藏状态就会累积太多东西,就可能对很前面的信息不那么容易抽取出来了。

所以观察序列的话,不是每个观察值都是同等重要的。就如一篇文章中,也有一些关键句。

在这里插入图片描述

2. 门

在这里插入图片描述

3. 候选隐状态

在这里插入图片描述

4. 真正的隐状态

在这里插入图片描述

5. 总结

gru引入了两个额外的门,Wxr、Wxz、Wxh都是可学习的参数,这样就是以前RNN可学习参数的3倍,2个极端情况:Zt=1,那么这一时刻的隐藏状态就等于上一个隐藏状态,且忽略掉当前时刻的Xt;Zt=0,Rt=0时,这一时刻的隐藏状态就只需要关注当前时刻的输入Xt。

所以通过两个门Rt和Zt来控制在这两种极端情况之间做一些可学习参数的调整,使得可以控制:是多看现在的输入Xt呢,还是多看过去的信息。

其中,一种特殊情况是Zt=0,Rt=1时,就会回到RNN的情况,通过当前时刻的Xt和上一时刻的隐藏状态来更新。

在这里插入图片描述

6. 代码实现

6.1 从零开始实现

首先,我们读取时间机器数据集:

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

1. 初始化参数模型

下一步是初始化模型参数。 我们从标准差为 0.01 的高斯分布中提取权重, 并将偏置项设为 0 ,超参数num_hiddens定义隐藏单元的数量, 实例化与更新门、重置门、候选隐状态和输出层相关的所有权重和偏置。

# 初始化模型参数
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    # 均值为0,方差为0.01的随机初始化权重
    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    # 辅助函数,包括:输入到hidden的W,hidden到hidden的W以及偏置
    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    # 创建了9个可以学习的参数
    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    # 相比RNN,GRU多出了上面这两行
    W_xh, W_hh, b_h = three()  # 候选隐状态参数

    # 输出层参数,也是可学习的参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)

    # 附加梯度,总共11个可以学习的参数
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

2. 定义模型

现在我们将定义隐状态的初始化函数init_gru_state。 与 rnn_scratch中定义的init_rnn_state函数一样, 此函数返回一个形状为(批量大小,隐藏单元个数)的张量,张量的值全部为零。

def init_gru_state(batch_size, num_hiddens, device):
	# 返回一个tuple,是全0的形状为(批量大小,隐藏单元个数)的张量
    return (torch.zeros((batch_size, num_hiddens), device=device), )

现在我们准备定义门控循环单元模型, 模型的架构与基本的循环神经网络单元是相同的, 只是权重更新公式更为复杂。

def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    # outputs是每个时刻的输出
    outputs = []
    for X in inputs: # inputs的形状是(num_steps,batch_size,vocab_size)
        # @ 这个符号表示矩阵乘法,相当于torch.matmul()
        # 等号右边的H是前一个时刻的H,左边的H是当前时刻的H
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

3. 训练与预测

训练和预测的工作方式与rnn_scratch完全相同。 训练结束后,我们分别打印输出训练集的困惑度, 以及前缀“time traveler”和“traveler”的预测序列上的困惑度。

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
# 之前实现的RNNModelScratch足够通用
# 传入"初始化模型参数"get_params,以及"初始化状态函数"init_gru_state,
# 以及"forward"如何计算,也就是用的网络结构gru,就能得到GRU模型
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

运行结果:

在这里插入图片描述

6. 2 简介实现

高级API包含了前文介绍的所有配置细节, 所以我们可以直接实例化门控循环单元模型。 这段代码的运行速度要快得多, 因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

运行结果:

在这里插入图片描述

7. Q&A

Q1:GRU网络中,Rt和Zt的网络结构一样,为什么就可以自动把Rt选成Reset gate,Zt选成Update gate?

A1: 参数不同,这些参数是自己去学习的。

Q2:GRU相比RNN多了那么多参数,需不需要提高grad clipping的阈值?

A2:参数多不一定会梯度爆炸,取决于怎么做运算的。通常来说GRU、LSTM的数值稳定性比RNN更好

老师建议,在实际情况下不要用RNN,多用GRU和LSTM。GRU和LSTM没有太多坏处,除了计算量大。

以下是基于鲸鱼算法优化门控循环单元GRU神经网络的MATLAB代码示例: ```matlab %% 数据准备 load('data.mat'); % 加载数据 X = X_train; % 输入数据 X Y = Y_train; % 输出数据 Y inputSize = size(X, 2); % 输入数据维度 outputSize = size(Y, 2); % 输出数据维度 hiddenSize = 10; % 隐藏层维度 maxEpochs = 100; % 最大迭代次数 batchSize = 10; % 每个批次的数据量 %% 初始化神经网络参数 params.Wr = randn(hiddenSize, inputSize); params.Ur = randn(hiddenSize, hiddenSize); params.br = zeros(hiddenSize, 1); params.Wz = randn(hiddenSize, inputSize); params.Uz = randn(hiddenSize, hiddenSize); params.bz = zeros(hiddenSize, 1); params.W = randn(hiddenSize, inputSize); params.U = randn(hiddenSize, hiddenSize); params.b = zeros(hiddenSize, 1); params.Wy = randn(outputSize, hiddenSize); params.by = zeros(outputSize, 1); %% 训练神经网络 for epoch = 1:maxEpochs % 随机排列数据 idx = randperm(size(X, 1)); X = X(idx, :); Y = Y(idx, :); % 分批次训练 for batch = 1:batchSize:size(X, 1) % 获取批次数据 X_batch = X(batch:min(batch+batchSize-1, end), :); Y_batch = Y(batch:min(batch+batchSize-1, end), :); % 前向传播 [h, z, r, y] = gru_forward(X_batch, params); % 计算损失 loss = cross_entropy(y, Y_batch); % 反向传播 [grads, dh_next] = gru_backward(X_batch, Y_batch, h, z, r, params); % 更新参数 params = whale_optimize(params, grads); end end %% 预测神经网络输出 X_test = X_test; % 输入数据 X_test [Y_pred, ~] = gru_forward(X_test, params); % 神经网络输出 Y_pred ``` 其中,`gru_forward` 和 `gru_backward` 分别为门控循环单元GRU神经网络的前向传播和反向传播函数,`whale_optimize` 为基于鲸鱼算法的神经网络参数优化函数,具体实现可以参考相关文献或者自行编写。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值