自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(282)
  • 收藏
  • 关注

原创 用colab跑项目代码但是需要的环境是python3.6时,需要配置python3.6的环境

用colab跑项目代码但是需要的环境是python3.6时,需要配置python3.6的环境

2023-02-08 23:13:31 3193 2

原创 98. 优化算法

笔记

2023-01-31 19:14:38 310 5

原创 97. BERT微调、自然语言推理数据集以及代码实现

笔记

2023-01-31 16:10:13 2293 1

原创 96. BERT预训练代码

笔记

2023-01-30 17:29:08 1073

原创 95. BERT预训练数据代码

笔记

2023-01-30 17:11:52 980

原创 94. BERT以及BERT代码实现

笔记

2023-01-30 15:28:10 1481

原创 93.transformer、多头注意力以及代码实现

笔记

2023-01-29 20:08:51 2442

原创 92.自注意力和位置编码以及代码实现

笔记

2023-01-28 19:36:20 767

原创 91.使用注意力机制的seq2seq以及代码实现

笔记

2023-01-25 18:14:54 1273

原创 90. 注意力分数及代码实现

笔记

2023-01-25 15:22:04 1641 1

原创 89. 注意力机制以及代码实现Nadaraya-Waston 核回归

笔记

2023-01-20 17:52:14 695

原创 88.束搜索

笔记

2023-01-19 19:34:51 133

原创 87.序列到序列学习(seq2seq)以及代码实现

笔记

2023-01-19 18:23:00 2624 2

原创 86.编码器-解码器架构以及代码实现

笔记

2023-01-18 20:17:04 916

原创 85.机器翻译与数据集

笔记

2023-01-18 19:37:02 543

原创 84. 双向循环神经网络

笔记

2023-01-18 16:29:50 697 1

原创 83. 深度循环神经网络及代码实现

笔记

2023-01-18 15:27:13 1331

原创 82.长短期记忆网络(LSTM)以及代码实现

笔记

2023-01-18 14:57:05 2153 1

原创 81.门控循环单元(GRU)以及代码实现

笔记

2023-01-18 12:06:34 3654 2

原创 80. 循环神经网络的简洁实现

笔记

2023-01-17 20:09:29 722 1

原创 79.循环神经网络的从零开始实现

笔记

2023-01-17 16:57:12 862 1

原创 78.循环神经网络(RNN)

笔记

2023-01-16 20:46:19 474

原创 77. 语言模型以及代码实现

笔记

2023-01-16 16:01:14 816

原创 76.文本预处理以及代码实现

笔记

2023-01-14 22:07:35 830

原创 75. 序列模型的代码实现

笔记

2023-01-14 18:01:35 500

原创 74. 序列模型

笔记

2023-01-14 14:42:49 688

原创 73. 风格迁移以及代码实现

笔记

2023-01-13 21:05:34 2055

原创 72.全卷积神经网络(FCN)及代码实现

全卷积网络()采用卷积神经网络实现了从。与我们之前在图像分类或目标检测部分介绍的卷积神经网络不同,全卷积网络:这是通过在(transposed convolution)实现的。因此,输出的类别预测与输入图像:通道维的输出即该位置对应像素的类别预测。

2023-01-13 15:37:18 3043

原创 71.转置卷积以及代码实现

笔记

2023-01-12 22:05:44 645

原创 70.语义分割和数据集

笔记

2023-01-12 15:26:13 2160

原创 69. 单发多框检测(SSD)代码实现以及Q&A

目标检测有两种类型的损失。第一种有关锚框类别的损失:我们可以简单地复用之前图像分类问题里一直使用的交叉熵损失函数来计算;第二种有关正类锚框偏移量的损失:预测偏移量是一个回归问题。但是,对于这个回归问题,我们在这里不使用 平方损失,而是使用𝐿1 范数损失,即预测值和真实值之差的绝对值。掩码变量bbox_masks令负类锚框和填充锚框不参与损失的计算。最后,我们将锚框类别和偏移量的损失相加,以获得模型的最终损失函数。

2023-01-11 18:11:32 708

原创 68.多尺度目标锚框的代码实现

笔记

2023-01-11 13:52:20 386

原创 67.物体检测算法:单发多框检测(SSD)和YOLO 以及Q&A

笔记

2023-01-10 14:34:07 274

原创 66.物体检测算法:区域卷积神经网络(R-CNN)系列

笔记

2023-01-10 12:11:43 649

原创 65. 锚框的代码实现

笔记

2023-01-09 20:43:07 583

原创 64. 锚框

笔记

2023-01-09 10:09:09 415

原创 63.目标检测数据集

笔记

2023-01-05 14:32:45 444

原创 62. 目标检测 / 物体检测 以及边缘框代码实现

笔记

2023-01-05 13:19:52 788 1

原创 60. 实战 Kaggle 比赛:图像分类 (CIFAR-10)【在colab上运行】

笔记

2023-01-05 11:13:57 1796 1

原创 59. 微调(fine-tuning)代码实现

笔记

2023-01-03 16:07:13 2137

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除