深度学习
文章平均质量分 72
笔记
chnyi6_ya
小菜鸟想变强
展开
-
笔记:BLIP源码之(2)模型是如何定义的
BertEncoder 调用了 BertLayer, BertLayer调用了 BertAttention、BertIntermediate、BertOutput,其中BertAttention 又调用了 BertSelfAttention、BertOutput再回到BertModelBertPooler# 只对第一个token做pooling。原创 2024-09-18 01:00:00 · 1093 阅读 · 0 评论 -
深度学习的笔记
【代码】从huggingface上仅下载pytorch模型权重和配置文件到服务器。原创 2024-09-14 14:47:51 · 824 阅读 · 0 评论 -
一些深度学习相关指令
设置全局的 CUDA 可见设备,在sh文件。原创 2024-09-08 18:03:17 · 373 阅读 · 0 评论 -
数据集下载地址
一些数据集的下载地址原创 2023-08-15 23:39:04 · 246 阅读 · 0 评论 -
深度学习代码,对coco数据集evaluate时,spice评估总是报错,解决如下:
降低java版本原创 2023-04-16 17:24:51 · 1021 阅读 · 7 评论 -
用colab跑项目代码但是需要的环境是python3.6时,需要配置python3.6的环境
用colab跑项目代码但是需要的环境是python3.6时,需要配置python3.6的环境原创 2023-02-08 23:13:31 · 3193 阅读 · 2 评论 -
98. 优化算法
笔记原创 2023-01-31 19:14:38 · 310 阅读 · 5 评论 -
97. BERT微调、自然语言推理数据集以及代码实现
笔记原创 2023-01-31 16:10:13 · 2293 阅读 · 1 评论 -
96. BERT预训练代码
笔记原创 2023-01-30 17:29:08 · 1073 阅读 · 0 评论 -
95. BERT预训练数据代码
笔记原创 2023-01-30 17:11:52 · 980 阅读 · 0 评论 -
94. BERT以及BERT代码实现
笔记原创 2023-01-30 15:28:10 · 1481 阅读 · 0 评论 -
93.transformer、多头注意力以及代码实现
笔记原创 2023-01-29 20:08:51 · 2442 阅读 · 0 评论 -
92.自注意力和位置编码以及代码实现
笔记原创 2023-01-28 19:36:20 · 767 阅读 · 0 评论 -
91.使用注意力机制的seq2seq以及代码实现
笔记原创 2023-01-25 18:14:54 · 1273 阅读 · 0 评论 -
90. 注意力分数及代码实现
笔记原创 2023-01-25 15:22:04 · 1641 阅读 · 1 评论 -
89. 注意力机制以及代码实现Nadaraya-Waston 核回归
笔记原创 2023-01-20 17:52:14 · 695 阅读 · 0 评论 -
88.束搜索
笔记原创 2023-01-19 19:34:51 · 133 阅读 · 0 评论 -
87.序列到序列学习(seq2seq)以及代码实现
笔记原创 2023-01-19 18:23:00 · 2624 阅读 · 2 评论 -
86.编码器-解码器架构以及代码实现
笔记原创 2023-01-18 20:17:04 · 916 阅读 · 0 评论 -
85.机器翻译与数据集
笔记原创 2023-01-18 19:37:02 · 543 阅读 · 0 评论 -
84. 双向循环神经网络
笔记原创 2023-01-18 16:29:50 · 697 阅读 · 1 评论 -
83. 深度循环神经网络及代码实现
笔记原创 2023-01-18 15:27:13 · 1331 阅读 · 0 评论 -
82.长短期记忆网络(LSTM)以及代码实现
笔记原创 2023-01-18 14:57:05 · 2153 阅读 · 1 评论 -
81.门控循环单元(GRU)以及代码实现
笔记原创 2023-01-18 12:06:34 · 3654 阅读 · 2 评论 -
80. 循环神经网络的简洁实现
笔记原创 2023-01-17 20:09:29 · 722 阅读 · 1 评论 -
79.循环神经网络的从零开始实现
笔记原创 2023-01-17 16:57:12 · 862 阅读 · 1 评论 -
78.循环神经网络(RNN)
笔记原创 2023-01-16 20:46:19 · 474 阅读 · 0 评论 -
77. 语言模型以及代码实现
笔记原创 2023-01-16 16:01:14 · 816 阅读 · 0 评论 -
76.文本预处理以及代码实现
笔记原创 2023-01-14 22:07:35 · 830 阅读 · 0 评论 -
75. 序列模型的代码实现
笔记原创 2023-01-14 18:01:35 · 500 阅读 · 0 评论 -
74. 序列模型
笔记原创 2023-01-14 14:42:49 · 688 阅读 · 0 评论 -
73. 风格迁移以及代码实现
笔记原创 2023-01-13 21:05:34 · 2055 阅读 · 0 评论 -
72.全卷积神经网络(FCN)及代码实现
全卷积网络()采用卷积神经网络实现了从。与我们之前在图像分类或目标检测部分介绍的卷积神经网络不同,全卷积网络:这是通过在(transposed convolution)实现的。因此,输出的类别预测与输入图像:通道维的输出即该位置对应像素的类别预测。原创 2023-01-13 15:37:18 · 3043 阅读 · 0 评论 -
71.转置卷积以及代码实现
笔记原创 2023-01-12 22:05:44 · 645 阅读 · 0 评论 -
70.语义分割和数据集
笔记原创 2023-01-12 15:26:13 · 2160 阅读 · 0 评论 -
69. 单发多框检测(SSD)代码实现以及Q&A
目标检测有两种类型的损失。第一种有关锚框类别的损失:我们可以简单地复用之前图像分类问题里一直使用的交叉熵损失函数来计算;第二种有关正类锚框偏移量的损失:预测偏移量是一个回归问题。但是,对于这个回归问题,我们在这里不使用 平方损失,而是使用𝐿1 范数损失,即预测值和真实值之差的绝对值。掩码变量bbox_masks令负类锚框和填充锚框不参与损失的计算。最后,我们将锚框类别和偏移量的损失相加,以获得模型的最终损失函数。原创 2023-01-11 18:11:32 · 708 阅读 · 0 评论 -
68.多尺度目标锚框的代码实现
笔记原创 2023-01-11 13:52:20 · 386 阅读 · 0 评论 -
67.物体检测算法:单发多框检测(SSD)和YOLO 以及Q&A
笔记原创 2023-01-10 14:34:07 · 274 阅读 · 0 评论 -
66.物体检测算法:区域卷积神经网络(R-CNN)系列
笔记原创 2023-01-10 12:11:43 · 649 阅读 · 0 评论 -
65. 锚框的代码实现
笔记原创 2023-01-09 20:43:07 · 583 阅读 · 0 评论
分享