01矩阵
给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 1:

输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]
示例 2:

输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]
提示:
- m == mat.length n= mat[i].length
- 1 <= m , n <= 10^4
- 1 <= m * n <= 10^4
- mat[i][j] is either 0 or 1
- mat 中至少有一个 0
//多源广度优先搜索,类似于多源最短路径算法,从全部的0开始搜索
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& mat) {
int n=mat.size(),m=mat[0].size();
vector<vector<int>>dist(n,vector<int>(m));
int book[10005][10005];
queue<int>qx,qy;
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
for(int i=0;i<mat.size();i++){
for(int j=0;j<mat[0].size();j++){
if(mat[i][j]==0){
qx.push(i);
qy.push(j);
}
}
}
while(!qx.empty()){
for(int i=0;i<4;i++){
int tx=qx.front()+dx[i];
int ty=qy.front()+dy[i];
if(tx>=0&&tx<n&&ty>=0&&ty<m&&mat[tx][ty]==1&&dist[tx][ty]==0){
dist[tx][ty]=dist[qx.front()][qy.front()]+1;
qx.push(tx);
qy.push(ty);
}
}
qx.pop();
qy.pop();
}
return dist;
}
};
腐烂的橘子
在给定的网格中,每个单元格可以有以下三个值之一:
值 0 代表空单元格;
值 1 代表新鲜橘子;
值 2 代表腐烂的橘子。
每分钟,任何与腐烂的橘子(在 4 个正方向上)相邻的新鲜橘子都会腐烂。
返回直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1。
示例 1:

输入:[[2,1,1],[1,1,0],[0,1,1]]
输出:4
示例 2:
输入:[[2,1,1],[0,1,1],[1,0,1]]
输出:-1
解释:左下角的橘子(第 2 行, 第 0 列)永远不会腐烂,因为腐烂只会发生在 4 个正向上。
示例 3:
输入:[[0,2]]
输出:0
解释:因为 0 分钟时已经没有新鲜橘子了,所以答案就是 0 。
提示:
- 1 <= grid.length <= 10
- 1 <= grid[0].length <= 10
- grid[i][j] 仅为 0、1 或 2
//多源广度优先搜索
class Solution {
public:
int orangesRotting(vector<vector<int>>& grid) {
int n=grid.size(),m=grid[0].size();
vector<vector<int>>minu(n,vector<int>(m));
queue<int>qx,qy;
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
int maxn=-15;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(grid[i][j]==2){
qx.push(i);
qy.push(j);
}
}
}
while(!qx.empty()){
for(int i=0;i<4;i++){
int tx=qx.front()+dx[i];
int ty=qy.front()+dy[i];
if(tx>=0&&tx<n&&ty>=0&&ty<m&&grid[tx][ty]==1){
grid[tx][ty]=2;
qx.push(tx);
qy.push(ty);
minu[tx][ty]=minu[qx.front()][qy.front()]+1;
}
}
qx.pop();
qy.pop();
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(grid[i][j]==1)
return -1;
maxn=max(maxn,minu[i][j]);
}
}
return maxn;
}
};
这篇博客探讨了如何运用多源广度优先搜索(BFS)算法来解决两个矩阵问题:一是计算矩阵中每个元素到最近0的距离,二是模拟腐烂橘子的扩散过程。在第一个问题中,当遇到0时,BFS从该位置开始搜索,更新所有相邻1的距离。在第二个问题中,腐烂的橘子会使其周围的新鲜橘子在下一分钟内腐烂,BFS用于找出腐烂传播的最短时间。博客通过示例代码详细解释了这两个问题的解决方案,并提供了算法的时间复杂度分析。
244

被折叠的 条评论
为什么被折叠?



