百度BML&飞桨训练营(六)公共场所火焰烟雾检测--PP-YOLOv2算法

百度BML基础技术合集 专栏收录该内容
14 篇文章 0 订阅

百度BML&飞桨训练营(六)公共场所火焰烟雾检测

文章相关内容资料已经取得百度BML允许,仅用与交流学习,请不要用于商业传播。

这一期继续讲解视觉在现实场景中的应用,PP-YOLOv2算法在火焰烟雾识别。

.下载操作模板与数据集(必看)
请提前准备好!
链接:https://aistudio.baidu.com/aistudio/datasetdetail/117915

在这里插入图片描述

1.进入BML主页,点击立即使用:https://ai.baidu.com/bml/
在这里插入图片描述

2.点击左侧“模型训练”下的“Notebook”
在这里插入图片描述

3.选择物体检测类型,点击立即创建
在这里插入图片描述

4.配置Notebook,Python3.7,PaddlePaddle2.0.0,GPUV100
在这里插入图片描述

5.启动并打开Notebook
在这里插入图片描述

第二步:导入“火灾烟雾检测操作模板“
1.点击图中按钮进行上传
在这里插入图片描述

2.打开模板,接下来的操作将在此模板中进行
在这里插入图片描述

第三步:安装环境
安装paddlepaddle-gpu
!python -m pip install paddlepaddle-gpu==2.1.3.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
在这里插入图片描述

第四步:安装PaddleDetection
1.下载并安装PaddleDetection
!git clone https://gitee.com/PaddlePaddle/PaddleDetection.git -b develop
在这里插入图片描述

2.安装PaddleDetection相关依赖
! pip install -r PaddleDetection/requirements.txt
(红色报错不影响后续操作)
在这里插入图片描述

第五步:上传数据集并解压
1.上传“fire_smoke“数据集(耐心等待上传)
在这里插入图片描述

2.解压数据集至根目录
操作前可执行pwd查看当前路径,若路径没在根目录,可执行
cd /home/work
解压命令
! unzip -oq ./fire_smoke.zip
在这里插入图片描述

第二步:配置模型训练的yml文件
在这里插入图片描述

PP-YOLOv2:相较20年发布的PP-YOLO,PP-YOLOv2版本在COCO 2017 test-dev上的精度提升了3.6个百分点,由45.9%提升到了49.5%;在640*640的输入尺寸下,FPS达到68.9FPS。主要改进点:
Path Aggregation Network
Mish Activation Function
Larger Input Size
IoU Aware Branch

1.配置ppyolov2_r50vd_dcn_voc.yml文件
路径:/home/work/PaddleDetection/configs/ppyolo/ppyolov2_r50vd_dcn_voc.yml
在这里插入图片描述

参考:若batch_size=12,总epoch=10,则训练时长预估3小时

2.配置voc.yml文件
路径 :/home/work/PaddleDetection/configs/datasets/voc.yml
修改数据集路径
修改txt文件名,与数据集中的txt文件名一致
图片

第三步:模型训练
1.进入训练路径
cd/home/work/PaddleDetection/tools
图片

2.启动单卡训练
!export CUDA_VISIBLE_DEVICES=0
图片

3.设置训练yml文件路径
config_path = ‘/home/work/PaddleDetection/configs/ppyolo/ppyolov2_r50vd_dcn_voc.yml’
图片

4.开始训练
!python train.py -c $config_path
图片

第四步:模型评估
1.设置模型评估的模型路径
weight_path = ‘/home/work/PaddleDetection/tools/output/ppyolov2_r50vd_dcn_voc/model_final.pdparams’

2.进行模型评估
!python eval.py -c c o n f i g p a t h − o w e i g h t s = config_path -o weights= configpathoweights=weight_path
图片
在这里插入图片描述

第二步:进入相应路径
cd/home/work/PaddleDetection/tools
图片

第三步:设置预测图片路径
img_path = ‘/home/work/fire_smoke/images/fire_000002.jpg’
thresh = 0.1
图片

第四步:模型预测
!python infer.py -cKaTeX parse error: Undefined control sequence: \ at position 29: …o use_gpu=True \̲ ̲-o weight=weight_path --draw_threshold=KaTeX parse error: Undefined control sequence: \ at position 8: thresh \̲ ̲--infer_img=img_path
图片

图片

第五步:查看预测结果
路径:home/work/PaddleDetection/tools/output
图片

图片

  • 3
    点赞
  • 9
    评论
  • 2
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 9 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页

打赏作者

翼达口香糖

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值