使用 Python 进行线性回归及梯度下降法优化的详细介绍


线性回归是一种广泛应用的机器学习算法,旨在通过一条最优的直线,刻画输入特征与目标值之间的线性关系。本文将详细介绍如何使用 scikit-learn 库进行线性回归建模,展示基于梯度下降法的参数优化过程,并分析模型的性能表现。
具体线性回归原理参照
简单线性回归

案例1:使用 scikit-learn 进行线性回归

在第一个案例中,我们将使用 scikit-learn 的 LinearRegression 模型对糖尿病数据集进行建模。这个数据集包含 10 个特征和一个目标值,描述了糖尿病患者的病情进展情况。

1.数据准备与加载

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split

# 加载糖尿病数据集
diabetes = datasets.load_diabetes()
X = diabetes.data  # 特征
y = diabetes.target  # 目标值

# 可视化某个特征与目标变量之间的关系
plt.scatter(X[:,5], y)  # 第 5 个特征与目标值的关系
plt.show()

当然这里我们也可以更换成自己的数据。

2.数据集划分与特征标准化

线性回归对特征的尺度比较敏感,因此我们对特征进行标准化,将数据转换为均值为 0、方差为 1 的分布。

from sklearn.preprocessing import StandardScaler

# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

# 特征标准化
std = StandardScaler()
X_train_standard = std.fit_transform(X_train)
X_test_standard = std.transform(X_test)

3.线性回归模型训练

我们使用 LinearRegression 模型训练数据,拟合线性回归模型。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小高要坚强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值