【文献阅读】Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement

本文介绍了一种基于MLLE的水下图像增强技术,涉及局部自适应颜色校正和对比度增强。通过最小颜色损失原则调整颜色通道,结合最大衰减映射融合,以提高图像的可见度和自然度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Li-Chongyi/MMLE_code: MMLE_Code_TIP2022

引言

文章提出了一种基于最小颜色损失及局部自适应对比度增强(MLLE)实现水下图像增强的方法,单幅图像的处理过程根据下图可以分为局部自适应颜色校正及局部自适应对比度增强两个过程,下面是对这两个过程的一些理解。

局部自适应颜色校正

水下图片呈现蓝色或绿色,是由于水介质对光的吸收造成的,为获得高能见度的水下图片(为了实现水下图片的复原),应该对水下图片进行颜色校正。这篇文章提出了一种局部自适应颜色校正(LACC)的方法,主要包括两部分,其一是根据最小颜色损失原则获得颜色转移图像,其二是通过最大衰减图像(映射)引导融合得到颜色校正图像,实现对颜色和细节的局部调整。

最小颜色损失原则
  • 首先是对r、g、b三个通道根据其平均像素值的大小重新定义为L、M、S通道。根据水下颜色失真图像的特性,必有一个通道颜色衰减较另外两个颜色通道严重,因此,重新定义三个颜色通道,构建衰减强弱通道之间的颜色损失,构建颜色补偿。

image = imread("underwater.png");

image = double(image)/255;
image_r = image(:, :, 1);
image_g = image(:, :, 2);
image_b = image(:, :, 3);
% figure('Name','原通道的三个通道')
% subplot(1,3,1), imshow(image_r), title("red channel");
% subplot(1,3,2), imshow(image_g), title("green channel");
% subplot(1,3,3), imshow(image_b), title("blue channel");

%% 根据三个通道平均值的大小重新定义

% 计算每个通道的平均灰度值
red_mean = mean(image(:,:,1), 'all');
green_mean = mean(image(:,:,2), 'all');
blue_mean = mean(image(:,:,3), 'all');

% 使用平均灰度值升序排序通道并定义新通道
sorted_means = sort([red_mean, green_mean, blue_mean]);

if red_mean == sorted_means(1)
    S_Channel = image(:,:,1);
    fprintf('S 通道对应原始图像的 Red 通道\n');
elseif red_mean == sorted_means(2)
    M_Channel = image(:,:,1);
    fprintf('M 通道对应原始图像的 Red 通道\n');
else
    L_Channel = image(:,:,1);
    fprintf('L 通道对应原始图像的 Red 通道\n');
end

if green_mean == sorted_means(1)
    S_Channel = image(:,:,2);
    fprintf('S 通道对应原始图像的 Green 通道\n');
elseif green_mean == sorted_means(2)
    M_Channel = image(:,:,2);
    fprintf('M 通道对应原始图像的 Green 通道\n');
else
    L_Channel = image(:,:,2);
    fprintf('L 通道对应原始图像的 Green 通道\n');
end

if blue_mean == sorted_means(1)
    S_Channel = image(:,:,3);
    fprintf('S 通道对应原始图像的 Blue 通道\n');
elseif blue_mean == sorted_means(2)
    M_Channel = image(:,:,3);
    fprintf('M 通道对应原始图像的 Blue 通道\n');
else
    L_Channel = image(:,:,3);
    fprintf('L 通道对应原始图像的 Blue 通道\n');
end

figure('Name','重新定义的三个通道')
subplot(131), imshow(L_Channel), title('L Channel');
subplot(132), imshow(M_Channel), title('M Channel');
subplot(133), imshow(S_Channel), title('S Channel');
  • 灰色世界假说:三通道在衰减之前具有相同的像素均值,且颜色补偿应与衰减通道及参考通道之间正相关。
  • 根据灰色世界假说,重新定义的L、M、S三个颜色通道之间的总颜色损失为:

        即总颜色损失由三个通道的平均像素值决定。

  •  颜色损失也限制了自适应颜色补偿。使用一个简单的线性传输来增加大均值通道的动态范围(L Channel),L通道的颜色校正如以下公式所示。对于这段话,我认为是将{I_{o}}^{max}{I_{o}}^{min}分别设置为255和0,{I_{l}}{I_{l}}^{min}{I_{l}}^{max}分别表示L通道、L通道像素的最小值、L通道像素的最大值。然而原文提到{I_{l}}^{min}{I_{l}}^{max}表示输入图像像素值的最大值和最小值(是L、M、S三个通道最大值和最小值?我的结果也是0和255),所以这里不是很理解。我是按照L通道的最大值和最小值来操作的。

  • 由于另外两个颜色通道的衰减较L通道更为严重,因此这两个通道的颜色补偿通过以下两个公式来实现:

  • 为满足灰色世界每个颜色通道的均值和直方图分布相似的原来,让颜色校正后的图像更为自然,对公式5、6进行迭代,直到三个通道满足最小颜色衰减。

  • 结合公式4、5、6、7,得到颜色补偿的颜色转移图像。
最大衰减映射引导融合

局部自适应对比度增强

### 回答1: 对于这个问题,我可以告诉你一些相关的内容。这篇论文的目的是通过中间介质传输引导的多彩色空间嵌入来提高水下图像的质量。具体来说,作者提出了一种基于颜色空间的图像增强方法,该方法有效地解决了水下图像中的色偏和雾化问题。通过使用中间介质传输模型,该方法可以通过光学传播分析来补偿颜色漂移。此外,该方法还利用了多彩色空间嵌入来减少嵌入噪声并提高增强后图像的质量。 ### 回答2: 《水下图像增强:基于介质传输引导的多色彩空间嵌入》是一种利用介质传输引导多色彩空间嵌入的水下图像增强方法。 水下环境中的图像受到许多因素的影响,如散射、吸收和颜色失真等,导致图像质量下降。该方法通过介质传输信息来改善水下图像的亮度和对比度,同时减小颜色失真。 首先,该方法利用物理光学模型和水下图像属性来建立水下介质传输模型。通过观察水下图像中像素值的变化,可以估计介质传输函数,从而获得水下图像中的光照分布信息。 然后,该方法采用多色彩空间嵌入技术来对水下图像进行增强。通过将水下图像转换到不同色彩空间,如RGB色彩空间和色度饱和度色彩空间,可以更好地捕捉到图像中的细节和纹理信息。通过将不同色彩空间的信息进行融合,可以提高水下图像的清晰度和质量。 最后,该方法还引入了局部对比度调整和全局增强方法,以进一步改善水下图像的对比度和色彩饱和度。 综上所述,《水下图像增强:基于介质传输引导的多色彩空间嵌入》是一种通过利用介质传输引导多色彩空间嵌入的方法,可以有效改善水下图像的亮度、对比度和颜色失真问题。这种方法在水下摄影、水下探测和水下监控等领域具有广泛的应用前景。 ### 回答3: 《通过介质传输引导的多色彩空间嵌入进行水下图像增强》是一种改进水下图像质量的方法。水下图像通常受到水体中光反射、散射等因素的影响,导致图像模糊、颜色失真等问题。本方法通过引入介质传输来减轻这些影响,并通过多色彩空间嵌入来提高图像质量。 在该方法中,首先通过对图像进行介质传输建模,来恢复出图像中的传输过程。介质传输模型考虑了水体的吸收和散射特性,并利用透射函数对每个像素的传输过程进行建模。通过这种方法,可以减少水体对图像的影响,提高图像的清晰度和细节。 接下来,在嵌入空间中进行多色彩处理,将图像映射到多个色彩空间中进行增强。传统的RGB色彩空间在水下图像增强方面不够充分,因此采用多色彩空间可以更好地保留图像细节和颜色信息。采用多色彩空间,可以充分利用通道信息改善图像质量,更好地还原水下场景。 最后,通过对基准图像和增强图像进行比较来评估算法的性能。实验结果表明,该方法在提高图像对比度、细节和颜色还原等方面取得了显著的改善效果。与传统的水下图像增强方法相比,本方法在图像质量上有了明显的提升。这种方法有望在水下摄影、水下监测等领域中得到广泛应用,提高水下图像的可见性和识别能力。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值