Faster RCNN基础概念

流程如下:
在这里插入图片描述
立即推搞懂RPN就等于搞懂Faster

1.RPN

在这里插入图片描述

1.1 基本的数据概念

最下面的是我们过完卷积之后的特征图,可以看到他是256-d 也就是意味着通过卷积后,变成了一维的256的特征向量,(其中要注意的,不同的backbone之后,特征向量大小是不同的,ZF:256;VGG16:512)

可以看到这里有k个anchor boxes,那么对应的每个anchor有2k个概率,一个是它为背景的概率,一个是它为目标的概率;那么对应每个anchor又会有4个参数,分别是x,y,w,h。(已经很熟悉啦)等会举例子看看,就知道了。

1.2 滑动窗口在这里插入图片描述

这个逻辑其实不难,比如果3*3的窗口,找到他的中心点,然后原图的横坐标除3,得到的比例去乘你中心点x的坐标,y也同理,那么就能在原图上找到你中心点;那么还有w,h,我特征图的w,h按比例缩放到你的原图上。
在这里插入图片描述

1.3 有图有真相,举例子

在这里插入图片描述
将设黄色框中就是我们生成的2k个scores,红色的是4k个coordinates。两个两个为一组,四个四个为一组。
那么黄色的第一组数据 0.1和0.9,其中0.1就是我们预测它为背景的概率,0.9为目标的概率;红色的第一组数据,x,y为中心点坐标,而w,h为宽高来表示这个anchor。
在这里插入图片描述
可以看到第二个框有点拉跨。那么你会问怎么来确定anchor,论文中说经验所得。一般是如下9个尺寸:
在这里插入图片描述
在这里插入图片描述
对于ZF感受野:171;VGG感受野:228,你可能会问,为什么?它可以预选一个512的anchor对吧?这一点论文中做了说明,它说,我们通过一个小的视野,可以预测大的物体也是有可能的。

在这里插入图片描述

2.数据采集

在这里插入图片描述
采样256个,128正,128负,如果正样本不够负样本填充;
正样本和负样本如何定义?

  1. IoU大于0.7的为正样本,小于0.3为负样本
  2. 正交最多的也定义为正样本(主要是在缺乏1情况下的时候,取用的)
3.损失函数

在这里插入图片描述
其中要注意的是最后 anchor位置的个数,位置的个数是指没有乘9的个数,不是刚刚说按经验可以有9个anchor吗?这个最后的参数指的是没有乘9的个数。

3.1 分类器损失

在这里插入图片描述

3.1 边界框损失

在这里插入图片描述

4.小结

在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页