- 博客(591)
- 收藏
- 关注
原创 构建企业级AI知识库:从RAG技术到多场景应用完全指南
AI知识库相比传统知识库具有智能化检索优势,但其成功依赖于高质量数据。文章从普通员工、业务团队和CEO三个视角分析了知识库的重要性,指出AI知识库本质上是Agent,最终目的是通过知识辅助决策和行动。RAG技术作为核心,通过数据清洗、分块、向量和检索优化等步骤实现,解决了模型上下文不足、提高准确性、获取最新信息等问题,同时降低成本并减少幻觉。
2025-12-20 17:32:58
363
原创 SpecFormer:基于位置无关参数的推测解码新架构,提升LLM推理效率
SpecFormer是一种新型推测解码架构,通过基于双向注意力、参数位置无关的设计,解决了传统自回归草稿模型在连续批处理系统中效率受限的问题。该架构结合上下文因果注意力和草稿双向注意力,并采用高效的分组RMS归一化、自蒸馏训练策略和批内梯度累积优化方法。实验表明,SpecFormer在各种模型规模下均适用,尤其在较小模型上展现出显著的加速优势,以更低的训练需求和计算开销为LLM推理可扩展性树立了新标准。
2025-12-20 17:31:14
872
原创 从零开始:如何让AI Agent记住你的喜好?MemMachine长期记忆系统搭建指南(建议收藏)
本文介绍如何使用MemMachine开源项目为AI Agent添加长期记忆功能,不同于传统RAG,它提供"剧情脑"和"档案脑"两种记忆方式,使AI能记住用户的前因后果和个人偏好。文章详细讲解了MemMachine的安装配置过程,包括OpenAI和阿里云API两种方案,并通过实战案例展示了如何让AI记住用户饮食习惯。该系统具有记忆动态进化、数据隐私保护和良好开发者体验三大优势,特别适合陪伴类、客服类等需要长期记忆的AI应用。
2025-12-19 19:07:17
974
原创 从零开始构建「微舆」多智能体舆情分析系统:实战指南
"微舆"是一个从零实现的多智能体舆情分析系统,通过AI爬虫集群7x24小时监控国内外30+社媒平台,融合微调模型与统计模型进行深度分析。系统包含Query、Media、Insight和Report四大Agent,通过"论坛"协作机制实现链式思维碰撞,支持多模态内容解析和公私域数据融合。基于Python模块化设计,提供轻量化部署方案,用户只需简单提问即可获得全面舆情分析报告,还可扩展应用于金融等其他领域。
2025-12-19 19:06:19
751
原创 大模型提示词工程:从入门到精通的AI对话艺术指南
本文系统介绍了AI提示词工程的核心原理与实用技巧,详细讲解了构建优质提示词的四大要素(角色、背景信息、任务指令、期望输出),并分享了角色扮演、范例提供、追问迭代、主动推理等多种实用方法,同时涵盖了功能性提示词和行业级提示词的构建策略,强调了提示词工程是与AI沟通的"表达艺术",通过清晰具体的表达可显著提升AI回答质量。
2025-12-18 18:34:25
1043
原创 AI智能体的核心引擎:知识库构建全流程详解(建议收藏)
本文详细介绍了AI知识库作为智能体"认知大脑"的核心价值,阐述了其三层组成要素(事实层、规则层、语义层)及与智能体的交互逻辑。通过未来智安的实践案例,展示了AI知识库如何实现快速威胁定位、持续学习沉淀和人机协同优化,显著提升安全运营效率。文章还系统讲解了知识库构建的四个关键步骤,强调了可演化知识体系对AI智能体从"被动响应"到"主动推理"安全跃迁的重要作用。
2025-12-18 18:33:32
931
原创 LLM RAG开发进阶:多查询检索技术详解与实战代码
本文详细介绍了LLM应用中RAG开发的三个关键步骤和六个优化阶段,重点阐述了多查询检索策略如何提升检索准确性。通过生成多个角度的子问题进行检索并合并结果,有效克服传统相似性搜索的局限。文章提供了LangChain中MultiQueryRetriever的具体实现代码和优化建议,包括prompt调整和参数设置,帮助开发者在实际应用中提高RAG系统的性能和准确性。
2025-12-16 18:52:08
783
原创 AI智能体(Agent)开发全攻略:概念、设计到安全运行,程序员必学
本文详解AI智能体的本质区别、三大核心特征及落地路径,涵盖模型选型、工具定义、指令配置等关键组件,解析单智能体与多智能体编排模式,并强调安全护栏体系的重要性,为开发者提供从0到1构建智能体的完整路线图,助力抢占AI红利,实现工作效率跃迁。
2025-12-16 18:51:10
797
原创 RAG系统优化完整指南,助你打造企业级知识库
文章深入解析RAG系统从50分提升至90分的优化策略,详述七大关键环节:知识提取(PDF/图片处理难点)、知识分块逻辑、嵌入模型选择、向量数据库与索引技术、检索优化技巧、回答生成及效果评估。强调真正高质量RAG需结合业务场景,在每环节选择合适策略并持续迭代,而非依赖低代码工具。适合开发者掌握企业级知识库构建核心技术。
2025-12-12 18:31:21
1209
原创 AI江湖变天记:从“闭源独霸“到“开源内卷“,2025年主流开放预训练模型全解析
2025年AI江湖已从"闭源独霸"转向"开源内卷",OpenAI、阿里、智源等纷纷推出开源大模型。本文详细解析了GPT-oss-120b、Qwen3系列、Mistral家族、Emu3.5等五大主流模型,从文本推理、多模态能力到部署商用进行横向比较,并提供企业级应用、中小企业开发等多场景选型指南。未来开源模型将向多模态融合、小型化与高性能并存方向发展,部署门槛持续降低,AI将真正成为人人可及的创新工具。
2025-12-12 18:30:31
743
原创 大模型微调指南:从“无所不能“到“真正懂你“,收藏这篇就够了
文章详细介绍了大模型微调(Fine-tuning)的概念、必要性及流程。微调是让基座模型理解特定业务、语气和世界观的关键步骤,适用于垂直领域知识补充、特定任务指令适应、风格与语气定制及数据私有化场景。文章阐述了微调的核心流程,包括数据准备、训练配置、训练监控和评估部署,并重点介绍了全量微调、参数高效微调(如LoRA、QLoRA)和指令微调三种主流方法,帮助开发者在有限资源下实现模型定制化。
2025-12-11 18:07:56
553
原创 大模型预训练与微调全攻略,从“通才“到“专家“的技术蜕变
大模型训练分为预训练和微调两阶段。预训练用海量数据打造"通才",掌握基础语言与知识;微调通过SFT教模型"什么是好答案",再通过Alignment教模型"什么是坏答案",最终形成安全可靠的专业"专家"。这种训练范式平衡了通用能力与专业能力,是当前AI时代最核心的技术基础。
2025-12-11 18:07:09
971
原创 大模型应用开发实战经验:从小白到能做出可用功能的完整指南
本文分享了作者从大模型小白到入门的完整心路历程,强调大模型应用开发不仅需要掌握开发流程,更要深入理解大模型能力并将其与业务需求相结合。作者经历了从简单调接口、按流程开发到思考模型能力如何匹配业务需求的进阶过程,最终通过智能体+工具的方式实现了真正可用的业务功能,为开发者提供了从入门到实战的宝贵经验。
2025-12-10 17:34:01
748
原创 小白也能学会的Hugging Face大模型入门教程
Hugging Face是提供开源AI工具和平台的公司,其生态系统包括Hub(模型和数据集托管平台)和工具链(Datasets、Tokenizers、Transformers等库)。文章详细介绍了如何使用Transformers库加载预训练模型,如何使用Tokenizer处理文本数据,以及如何使用Datasets库高效加载和预处理数据集。这些工具共同构成了大模型开发的完整工作流,简化了从数据处理到模型训练的整个过程。
2025-12-10 17:33:20
773
原创 大模型训练全流程:从零开始构建LLM的5个核心步骤
文章详细介绍了大语言模型(LLM)从零开始训练的五个关键阶段:随机初始化、预训练、指令微调、偏好微调和推理微调。通过这些阶段,模型从初始的随机状态逐步获得语言理解、对话能力、符合人类偏好的回答以及推理能力,最终能够执行问答、代码编写等复杂任务。
2025-12-09 10:19:54
834
原创 Agent 的记忆模块是怎么实现的?
面试官经常问这样一个问题:> “你能讲讲 Agent 的记忆模块(Memory)是怎么做的吗?”这个问题其实比听起来难。很多人回答“就是存上下文呀”,但这只是冰山一角。要真正答好,得从三个角度说清楚:**为什么需要记忆、有哪些类型、在工程上怎么落地。**今天这篇,就把 Agent 里的“记忆系统”讲透。
2025-12-09 10:18:25
904
原创 LoRA大模型微调入门指南:从原理到实践,让你的AI助手更懂你!
本文详细介绍了使用LoRA方法对大模型进行高效微调的全流程,包括微调必要性、LoRA原理(通过低秩分解大幅降低计算成本)、训练环境搭建、数据准备、模型训练、推理部署及问题解决方案。通过LoRA技术,可在保持模型性能的同时,将微调成本降低99%,实现领域适配、任务定制和性能提升,是开发者定制专属AI助手的实用指南。
2025-12-06 18:50:06
935
原创 一文搞懂大模型训练四阶段:从随机初始化到推理微调
本文详细介绍了大模型训练的四个关键阶段:首先通过随机初始化创建基础模型;然后通过预训练在海量语料库中学习语言基础知识;接着通过指令微调使模型能够遵循提示并正确回复;最后通过偏好微调和推理微调进一步提升模型性能,使其与人类偏好一致并在推理任务中表现更佳。这些阶段共同构成了大模型从无知到精通的完整训练路径。
2025-11-29 10:52:29
815
原创 大模型Agent规划模式:从“目标拆解“到“迭代优化“的完整实现
规划模式是AI智能体的核心设计模式,使其具备拆解复杂任务、按序执行并动态适配目标的能力。文章详细介绍了规划模式的实现机制,包括任务分解、多计划生成与选择、反思与细化、记忆增强规划,以及完整的实施框架。规划模式虽能有效处理复杂任务,但对初始目标明确性要求高,且计算成本大,在动态环境中适应性有限。
2025-11-29 10:51:00
977
原创 大模型瘦身术:量化与蒸馏技术深度解析
文章介绍大模型压缩的两大主流技术:量化通过降低参数精度(如Float32转INT8)减少存储需求与计算资源,同时保持性能;蒸馏则训练小模型模仿大模型行为,大幅缩减模型规模。量化实施简单不需重新训练,蒸馏灵活度高可获全新小模型。这些技术对降低AI部署成本、实现技术"平民化"至关重要,是开发者必备知识。
2025-11-28 14:24:53
739
原创 结构化RAG技术详解:从60%到99%准确率的企业级大模型解决方案
结构化RAG(S-RAG)解决了传统RAG在企业场景中的局限性,通过将非结构化文档转换为结构化数据,并采用SQL查询方式进行精确检索,使准确率提升60%,召回率接近满分。该方法能有效处理聚合类问题、需要全覆盖的问题以及信息密集的语料库,在合规、报告和关键业务流程中提供可靠、可追溯的答案,是企业级大模型应用的突破性解决方案。
2025-11-28 14:23:52
752
原创 大模型微调技术详解与PEFT方法实践
本文详细介绍了大模型微调技术,特别是参数高效微调(PEFT)方法。包括全微调与部分微调的区别,以及多种PEFT技术如Prompt Tuning、Prefix Tuning、P-Tuning v2和AdaLoRA等。文章解释了这些方法的原理、优缺点和适用场景,并提供了代码示例。最后总结了大模型微调的一般步骤,从数据准备、模型选择到训练部署的全流程,为开发者提供了实用的大模型微调指南。
2025-11-27 13:47:19
257
原创 从零构建智能Agent:大模型驱动的自主决策系统开发指南
文章全面介绍Agent智能体的核心模块(规划、记忆、工具调度、上下文工程)和开发方法,重点讲解如何基于大模型构建自主决策系统,包括记忆系统构建、函数调用实现、多Agent协作等关键技术。通过腾讯Dola数据分析助手等实际案例,提供从理论到实践的完整开发指南,帮助开发者掌握Agent架构设计与实现,适合初学者和进阶程序员收藏学习。
2025-11-27 13:46:20
691
原创 全量微调 vs LoRA:一篇文章彻底搞懂参数高效微调
当我们拿到一个大语言模型(如Llama、Qwen)时,常常发现它在某些任务上表现不够好。这时候,**微调(Fine-tuning)**就成了提升模型能力的关键手段。但问题来了:微调一个70B参数的模型,可能需要数百GB显存和数万元成本。有没有更经济的方法?今天我们要讲的**LoRA(Low-Rank Adaptation)技术,能让你用不到4%的资源**完成微调,效果还不差!这是怎么做到的?让我们从微调的本质说起。
2025-11-26 13:51:48
628
原创 RAG召回精度提升全攻略:从文档拆分到多维度检索策略
RAG系统中文档处理是重难点,人工处理效果有限,建议使用大模型进行语义拆分。提升召回精度可通过四种策略:同时使用稠密和稀疏向量;对分段文档提取关键字;对文档内容总结提炼;结合标量和向量检索。这些策略可联合使用,并对召回结果进行去重、排序和重排序处理,最终提高RAG系统质量。
2025-11-25 15:22:39
377
原创 2025大模型技术选型:RAG、上下文学习与微调,如何做出正确决策?
文章详解AI项目三大技术选型:RAG(检索增强生成)适合知识不足场景,知识存于外部;In-Context Learning通过示例激发能力,无需训练;Fine-tuning通过训练将能力嵌入模型,效率高但成本高。分析了它们的本质区别、适用场景、优缺点、成本对比及组合策略,帮助开发者根据实际需求做出正确选择,避免资源浪费。
2025-11-25 15:21:38
266
原创 大模型调教术:提示词工程完全指南
本文系统介绍了提示词工程的概念、技巧与评估方法,强调其作为与AI有效沟通的艺术重要性。文章详解了8大核心原则和12个精选框架,并推荐多个优化评估平台。通过"四格漫画生成大师"实例展示如何应用RISE框架编写高质量提示词,使大模型更顺从、更懂用户。适合程序员和AI爱好者学习收藏。
2025-11-24 17:33:12
1210
原创 彻底解决AI隐私泄露风险!本地部署大模型详细指南
本文针对AI使用中的隐私泄露风险,提出本地部署大模型作为解决方案。以阿里通义千问Qwen3-0.6B模型为例,详细介绍了使用Ollama工具进行本地部署的零代码步骤。本地部署模型不仅保护隐私,还能在断网状态下使用,响应速度快,适合处理敏感内容。文章还介绍了"端侧AI创新挑战赛"活动,鼓励读者围绕本地模型开发创新应用。
2025-11-24 17:32:07
770
原创 大模型部署指南:参数量选择与本地工具全解析
本文详细探讨了不同参数量大模型(1.5B至32B+)的性能差异、成本效益及硬件需求,指出32B是当前性价比拐点。同时,全面对比了Ollama、LMStudio等本地部署工具的特点和适用场景,并介绍了Page Assist、CherryStudio等相关工具。文章强调,领域适配和创新架构可降低大模型部署门槛,为开发者提供了实用的大模型部署参考。
2025-11-22 18:05:25
1332
原创 从零开始学AI大模型应用架构:全景技术栈与设计模式
文章全面介绍AI大模型应用架构设计全貌,涵盖从基础设施到应用层的完整技术栈。详细阐述企业级开发知识体系、智能体执行引擎、ReAct架构、RAG记忆系统、Agentic RAG架构、MCP架构设计等关键技术,并提出基于MCP的AI应用架构新范式,为开发者提供系统化学习路径。
2025-11-22 18:04:23
729
原创 【万字长文】LLM大模型技术原理深度解析,零基础入门到精通,收藏这篇就够了
【万字长文】LLM大模型技术原理深度解析,零基础入门到精通,收藏这篇就够了
2025-07-01 20:20:11
1134
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅