Pipeline
文章平均质量分 98
LDG_AGI
人工智能&信息流分发算法从业者,CSDN人工智能领域2万粉博主,阿里云专家博主,ACM/ICPC亚洲区域赛铜牌。
展开
-
【人工智能】Transformers之Pipeline(二十三):文档视觉问答(document-question-answering)
本文对transformers之pipeline的文档视觉问答(document-question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的文档视觉问答(document-question-answering)模型。原创 2024-11-12 19:25:08 · 862 阅读 · 39 评论 -
【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
本文对transformers之pipeline的零样本文本分类(zero-shot-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的零样本文本分类(zero-shot-classification)模型。原创 2024-11-06 18:28:09 · 2320 阅读 · 69 评论 -
【人工智能】Transformers之Pipeline(二十一):翻译(translation)
本文对transformers之pipeline的翻译(translation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的翻译(translation)模型。原创 2024-10-24 16:30:09 · 1111 阅读 · 78 评论 -
【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)
本文对transformers之pipeline的令牌分类(token-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的令牌分类(token-classification)模型。原创 2024-10-22 15:27:30 · 3377 阅读 · 65 评论 -
【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)
本文对transformers之pipeline的文生文(text2text-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文生文(text2text-generation)模型。原创 2024-09-23 19:07:33 · 3692 阅读 · 94 评论 -
【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)
本文对transformers之pipeline的文本生成(text-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文本生成(text-generation)模型。原创 2024-09-13 18:01:57 · 3724 阅读 · 114 评论 -
【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)
本文对transformers之pipeline的文本分类(text-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文本分类(text-classification)模型。原创 2024-09-11 20:34:12 · 4792 阅读 · 96 评论 -
【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)
本文对transformers之pipeline的表格问答(table-question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的表格问答(table-question-answering)模型。原创 2024-09-10 11:47:46 · 2674 阅读 · 89 评论 -
【人工智能】Transformers之Pipeline(十五):总结(summarization)
本文对transformers之pipeline的总结(summarization)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的总结(summarization)模型。原创 2024-09-04 20:39:08 · 2307 阅读 · 102 评论 -
【人工智能】Transformers之Pipeline(十四):问答(question-answering)
本文对transformers之pipeline的问答(question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的问答(question-answering)模型。原创 2024-08-30 19:47:44 · 2164 阅读 · 95 评论 -
【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
本文对transformers之pipeline的填充蒙版(fill-mask)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的填充蒙版(fill-mask)模型。原创 2024-08-27 17:34:02 · 2185 阅读 · 105 评论 -
【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)
本文对transformers之pipeline的零样本物体检测(zero-shot-object-detection)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本物体检测(zero-shot-object-detection)模型。原创 2024-08-23 19:50:25 · 2717 阅读 · 108 评论 -
【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
本文对transformers之pipeline的零样本图片分类(zero-shot-image-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本图片分类(zero-shot-image-classification)模型。原创 2024-08-20 21:42:05 · 2695 阅读 · 114 评论 -
【人工智能】Transformers之Pipeline(十):视频分类(video-classification)
本文对transformers之pipeline的视频分类(video-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用代码极简的代码部署计算机视觉中的视频分类(video-classification)模型,应用于视频判别场景。原创 2024-08-15 17:20:12 · 3333 阅读 · 123 评论 -
【人工智能】Transformers之Pipeline(九):物体检测(object-detection)
本文对transformers之pipeline的物体检测(object-detection)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的物体检测(object-detection)模型。原创 2024-08-11 13:56:14 · 2035 阅读 · 121 评论 -
【人工智能】Transformers之Pipeline(八):文生图/图生图(text-to-image/image-to-image)
本文对文生图/图生图(text-to-image/image-to-image)从概述、SD技术原理、SD文生图实战、模型排名等方面进行介绍,读者可以基于DiffusionPipeline使用文中的极简代码进行文生图的初步体验原创 2024-08-06 23:50:22 · 3403 阅读 · 129 评论 -
【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)
本文对transformers之pipeline的图像分割(image-segmentation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的图像分割(image-segmentation)模型。原创 2024-08-02 18:26:36 · 4636 阅读 · 154 评论 -
【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
本文对transformers之pipeline的图像分类(image-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的图像分类(image-classification)模型。原创 2024-07-29 20:33:45 · 3269 阅读 · 256 评论 -
【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)
本文对transformers之pipeline的深度估计(depth-estimation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的使用计算机视觉中的深度估计(depth-estimation)模型,应用于3D建模、自动驾驶距离测算等。原创 2024-07-24 21:11:43 · 4547 阅读 · 152 评论 -
【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)
本文对transformers之pipeline的零样本音频分类(zero-shot-audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行零样本音频分类推理,模型目前比较冷门,但介于pipeline设计了这个task,为了完整性,还是写了这一篇。原创 2024-07-22 20:17:29 · 4204 阅读 · 190 评论 -
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
本文对transformers之pipeline的文本生成语音(text-to-audio/text-to-speech)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline以及tts的python和命令行工具完成文字生成语音、文字参考语音生成语音、语音参考语音生成语音,应用于有声小说、音乐创作、变音等非常广泛的场景。原创 2024-07-18 21:47:54 · 15044 阅读 · 251 评论 -
【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
本文对transformers之pipeline的自动语音识别(automatic-speech-recognition)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行自动语音识别推理,应用于语音识别、字幕提取等业务场景。原创 2024-07-15 22:02:05 · 5608 阅读 · 126 评论 -
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
本文对transformers之pipeline的音频分类(audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行音频分类推理,应用于音频情感识别、音乐曲风判断等业务场景。原创 2024-07-12 22:07:10 · 6902 阅读 · 109 评论 -
【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
本文为transformers之pipeline专栏的第0篇,后面会以每个task为一篇,共计讲述28+个tasks的用法,通过28个tasks的pipeline使用学习,可以掌握语音、计算机视觉、自然语言处理、多模态乃至强化学习等30w+个huggingface上的开源大模型。让你成为大模型领域的专家!原创 2024-07-10 21:33:17 · 10488 阅读 · 254 评论
分享