pytorch使用GPU训练模型

使用GPU训练深度学习模型是经常使用的,GPU训练模型的速度远远超过CPU训练,而多块GPU并行训练的速度远远超过单个GPU训练。
下面学习单块GPU和多块GPU训练模型。

1. 单块GPU

import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
##假设模型是model
model.to(device)  #如果有GPU,将模型转移到GPU上

2. 多块GPU

import torch
import torch.nn as nn
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

if torch.cuda.device_count()>1:
	model = nn.DataParallel(model)
model.to(device)  #将训练分散在多个GPU上

#也可指定哪块GPU
#os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,3'

#或者device_ids = [0,1,3]
#model = nn.DataParalle(model,device_ids=device_ids)

如果上述内容你已经看完了,恭喜你应该已经掌握了使用Pytorch利用GPU训练模型。
下一篇文章将会构建模型,给出具体实例,测试CPU训练模型、单块GPU训练模型、多块GPU训练模型的时间差别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hj_caas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值